Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Epigenetics ; 6(3): 268-72, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21242719

ABSTRACT

The number of predicted human microRNAs in Sanger miRBase currently stands at over a thousand, with each of these in turn predicted to target numerous mRNAs. However, those microRNAs for which mRNA targets have been evaluated, verified and reported in the literature are still in the minority and the bulk of microRNA/mRNA interactions are yet to be confirmed. Confirmation of microRNA interaction with predicted mRNA targets represents a considerable undertaking, made more complex by potential synergistic effects of multiple microRNAs and the three possible outcomes (translational repression, degradation or a mixture of both). In addition, contrasting results obtained when either stably expressing or transiently transfecting members of the miR-200 family illustrate limitations in the verification methods currently in use. In this article we suggest that instead of allowing computational predictions to drive investigation, it would be desirable, when possible, to systematically evaluate microRNA targets using inducible, stable, ectopic expression. The advantage of stable lines ectopically expressing microRNA(s) is that they allow an analysis of changes to both the proteome and the transcriptome. This would allow verification of targets, improve the design of prediction algorithms and greatly increase our understanding of the outcome of microRNA/mRNA interaction.


Subject(s)
Computational Biology/methods , MicroRNAs/metabolism , Algorithms , Gene Expression Profiling , Humans , Models, Genetic , RNA, Messenger/metabolism
2.
Cell Cycle ; 8(13): 2064-9, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19502803

ABSTRACT

Regulation of the transcription factor TCF8 (ZEB1) by the microRNA miR-200c and was first identified using a bioinformatic and relative quantitative PCR based approach.(1) Using stable ectopic expression of miR-200c we then demonstrated loss of TCF8 (ZEB1) mRNA and restoration of its primary regulatory target, E-cadherin.(2) Recently, other members of the miR-200 'family' and an additional unrelated microRNA, miR-205, have been reported to be essential for the regulation of TCF8 (ZEB1) and restoration of E-cadherin.(3-5) To investigate, we repeated our initial method(s) and generated individual stable cell-lines, expressing the miR-200 'family' members; miR-200c, miR-200b, miR-141 and the related miR-205. Of these lines, miR-200b produced no mature transcript and miR-205 and miR-141 cells were either morphologically similar to controls or showed some slight changes respectively. However no reduction in TCF8/ZEB1 mRNA or restoration of E-cadherin could be detected in either line. In contrast, cells expressing miR-200c had a significantly altered morphology from mesenchymal to epithelial and restored expression of E-cadherin. These contrasting findings demonstrate that, as transient transfection is in essence an RNAi experiment, results should be treated with caution when investigating microRNAs and that an examination of microRNAs with similar seed regions requires stable ectopic expression to accurately reflect the endogenous mechanism(s).


Subject(s)
Cadherins/metabolism , Homeodomain Proteins/metabolism , MicroRNAs/metabolism , Transcription Factors/metabolism , Base Sequence , Cell Line, Tumor , Female , Humans , MicroRNAs/genetics , RNA Interference , Transfection , Zinc Finger E-box-Binding Homeobox 1
3.
Aging (Albany NY) ; 1(5): 470-80, 2009 May.
Article in English | MEDLINE | ID: mdl-20126416

ABSTRACT

Longevity in humans is determined by multiple environmental and genetic factors. We have investigated possible associations between longevity and Single Nucleotide Polymorphisms (SNPs) in the p21 (CDKN1A) gene, a stress-inducible senescence-associated cell cycle inhibitor, expression of which upregulates genes implicated in several age-related diseases. By sequencing the promoter and exons of p21 in genomic DNA of ten individuals over 90 years old, we have identified 30 SNPs, many of which had not been previously characterized. A cluster of minor alleles within the -4547/-3489 bp region did not alter the basal activity or p53 responsiveness of the p21 promoter. We then compared the frequency of 41 p21 SNPs between 184 centenarians and 184 younger subjects in the Italian population. Rare alleles of two exon-derived SNPs, rs1801270 and rs1059234, were significantly under-represented among the centenarians; no significant differences were found for 39 non-exonic SNPs. SNP rs1801270 causes Ser to Arg substitution at amino acid 31 and SNP rs1059234 leads to a nucleotide change in the 3'-untranslated region. Previous studies showed that the rare alleles of these two SNPs may play a role in cancer. These p21 alleles may be potentially detrimental to longevity and therefore are rare in centenarians.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Longevity/genetics , Polymorphism, Single Nucleotide/genetics , Haplotypes , Humans , Italy , Linkage Disequilibrium , Promoter Regions, Genetic/genetics
4.
Cancer Res ; 67(17): 7972-6, 2007 Sep 01.
Article in English | MEDLINE | ID: mdl-17804704

ABSTRACT

MicroRNAs are approximately 22-nucleotide sequences thought to interact with multiple mRNAs resulting in either translational repression or degradation. We previously reported that several microRNAs had variable expression in mammalian cell lines, and we examined one, miR-200c, in more detail. A combination of bioinformatics and quantitative reverse transcription-PCR was used to identify potential targets and revealed that the zinc finger transcription factor transcription factor 8 (TCF8; also termed ZEB1, deltaEF1, Nil-2-alpha) had inversely proportional expression levels to miR-200c. Knockout experiments using anti-microRNA oligonucleotides increased TCF8 levels but with nonspecific effects. Therefore, to investigate target predictions, we overexpressed miR-200c in select cells lines. Ordinarily, the expression level of miR-200c in non-small-cell lung cancer A549 cells is low in contrast to normal human bronchial epithelial cells. Stable overexpression of miR-200c in A549 cells results in a loss of TCF8, an increase in expression of its regulatory target, E-cadherin, and altered cell morphology. In MCF7 (estrogen receptor-positive breast cancer) cells, there is endogenous expression of miR-200c and E-cadherin but TCF8 is absent. Conversely, MDA-MB-231 (estrogen receptor-negative) cells lack detectable miR-200c and E-cadherin (the latter reportedly due to promoter region methylation) but express TCF8. The ectopic expression of miR-200c in this cell line also reduced levels of TCF8, restored E-cadherin expression, and altered cell morphology. Because the down-regulation of E-cadherin is a crucial event in epithelial-to-mesenchymal transition, loss of miR-200c expression could play a significant role in the initiation of an invasive phenotype, and, equally, miR-200c overexpression holds potential for its reversal.


Subject(s)
Cadherins/genetics , Homeodomain Proteins/genetics , MicroRNAs/genetics , Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , Humans , Models, Biological , Neoplasm Invasiveness/genetics , Transfection , Tumor Cells, Cultured , Zinc Finger E-box-Binding Homeobox 1
5.
Cell Cycle ; 5(17): 1951-6, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16929162

ABSTRACT

Using an anchored oligo(dT) based RT-PCR approach we quantified endogenous expression of ten microRNAs in six cell lines. This identified a miRNA, miR-200c, with variable expression, ranging from undetectable in MDA-MB-231 and HT1080 to highly expressed in MCF7. The variable expression provided a model system to investigate endogenous interactions between miRNAs and their computationally predicted targets. As the expression level of the predicted mRNA targets and miR-200c in these lines should have an inverse relationship if cleavage or degradation results from the interaction. To select targets for analysis we used Affymetrix expression data and computational prediction programs. Affymetrix data indicated approximately 3500 candidate mRNAs, absent in MCF7 and present in MDA-MB-231 or HT1080. These targets were cross-referenced against approximately 600 computationally predicted miR-200c targets, identifying twenty potential mRNAs. Expression analysis by qRT-PCR of these targets and an additional ten mRNAs (selected using the prediction program ranking alone) revealed four mRNAs, BIN1, TCF8, RND3 and LHFP with an inverse relationship to miR-200c. Of the remainder, the majority did not appear to be degraded (and may be translational targets) or were undetectable in the cell lines examined. Finally, inhibition of miR-200c using an anti-miRNA 2'-0-Methyl oligonucleotide (AMO) resulted in an increase in expression of one of the targets, the transcription factor TCF8. These results indicate that a single miRNA could directly affect the mRNA levels of an important transcription factor, albeit in a manner specific to cell lines. Further investigation is required to confirm this in vivo and determine any translational effects.


Subject(s)
MicroRNAs/metabolism , RNA Stability , RNA, Messenger/metabolism , Cell Line , Computational Biology , Gene Expression Profiling , Gene Expression Regulation , Humans , MicroRNAs/analysis , RNA, Messenger/analysis , Reverse Transcriptase Polymerase Chain Reaction
6.
Hum Mol Genet ; 14(6): 873-83, 2005 Mar 15.
Article in English | MEDLINE | ID: mdl-15703191

ABSTRACT

Myotonic dystrophy type 1 is an autosomal dominant disorder associated with the expansion of a CTG repeat in the 3' untranslated region (UTR) of the DMPK gene. Recent data suggest that pathogenesis is predominantly mediated by a gain of function of the mutant transcript. In patients, these expanded CUG repeat-containing transcripts are sequestered into ribonuclear foci that also contain the muscleblind-like proteins. To provide further insights into muscleblind function and the pathogenesis of myotonic dystrophy, we generated Drosophila incorporating CTG repeats in the 3'-UTR of a reporter gene. As in patients, expanded CUG repeats form discrete ribonuclear foci in Drosophila muscle cells that co-localize with muscleblind. Unexpectedly, however, foci are not observed in all cell types and muscleblind is neither necessary nor sufficient for their formation. The foci are dynamic transient structures with short half-lifes that do not co-localize with the proteasome, suggesting they are unlikely to contain mis-folded proteins. However, they do co-localize with non-A, the human orthologs of which are implicated in both RNA splicing and attachment of dsRNA to the nuclear matrix. Muscleblind is also revealed as having a previously unrecognized role in stabilizing CUG transcripts. Most interestingly, Drosophila expressing (CUG)162 repeats has no detectable pathological phenotype suggesting that in contrast to expanded polyglutamine-containing proteins, neither the expanded CUG repeat RNA nor the ribonuclear foci are directly toxic.


Subject(s)
3' Untranslated Regions/metabolism , Myotonic Dystrophy/genetics , Protein Serine-Threonine Kinases/genetics , RNA Stability/genetics , Trinucleotide Repeat Expansion/genetics , Animals , Drosophila melanogaster , Humans , Myotonic Dystrophy/pathology , Myotonin-Protein Kinase , Protein Serine-Threonine Kinases/metabolism
7.
Am J Pathol ; 163(1): 37-45, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12819009

ABSTRACT

Hypermethylation of multiple CpG islands is a common event in cancer. To assess the prognostic values of this epigenetic alteration, we developed Methylation Target Array (MTA), derived from the concept of tissue microarray, for simultaneous analysis of DNA hypermethylation in hundreds of tissue genomes. In MTA, linker-ligated CpG island fragments were digested with methylation-sensitive endonucleases and amplified with flanking primers. A panel of 468 MTA amplicons, which represented the whole repertoire of methylated CpG islands in 93 breast tumors, 20 normal breast tissues, and 4 breast cancer cell lines, were arrayed on nylon membrane for probe hybridization. Positive hybridization signals detected in tumor amplicons, but not in normal amplicons, were indicative of aberrant hypermethylation in tumor samples. This is attributed to aberrant sites that were protected from methylation-sensitive restriction and were amplified by PCR in tumor samples, while the same sites were restricted and could not be amplified in normal samples. Hypermethylation frequencies of the 10 genes tested in breast tumors and cancer cell lines were 60% for GPC3, 58% for RASSF1A, 32% for 3OST3B, 30% for HOXA5, 28% for uPA, 25% for WT1, 23% for BRCA1, 9% for DAPK1, and 0% for KL. Furthermore, hypermethylation of 5 to 7 loci of these genes was significantly correlated with hormone receptor status, clinical stages, and ages at diagnosis of the patients analyzed. This novel approach thus provides an additional avenue for assessing clinicopathological consequences of DNA hypermethylation in breast cancer.


Subject(s)
Breast Neoplasms/genetics , CpG Islands , DNA Methylation , Genome, Human , Oligonucleotide Array Sequence Analysis/methods , Breast Neoplasms/pathology , Female , Gene Expression Profiling , Humans , Molecular Sequence Data , Promoter Regions, Genetic , Statistics as Topic , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...