Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters










Publication year range
2.
3.
ACS Mater Au ; 3(2): 176, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-38089725

ABSTRACT

[This corrects the article DOI: 10.1021/acsmaterialsau.1c00061.].

4.
ACS Mater Au ; 3(4): 299-309, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-38090124

ABSTRACT

In acidic media, many transition-metal phosphides are reported to be stable catalysts for the hydrogen evolution reaction (HER) but typically exhibit poor stability toward the corresponding oxygen evolution reaction (OER). A notable exception appears to be Rh2P/C nanoparticles, reported to be active and stable toward both the HER and OER. Previously, we investigated base-metal-substituted Rh2P, specifically Co2-xRhxP and Ni2-xRhxP, for HER and OER as a means to reduce the noble-metal content and tune the reactivity for these disparate reactions. In alkaline media, the Rh-rich phases were found to be most active for the HER, while base-metal-rich phases were found to be the most active for the OER. However, Co2-xRhxP was not stable in acidic media due to the dissolution of Co. In this study, the activity and stability of our previously synthesized Ni2-xRhxP nanoparticle catalysts (x = 0, 0.25, 0.50, 1.75) toward the HER and OER in acidic electrolyte are probed. For the HER, the Ni0.25Rh1.75P phase was found to have comparable geometric activity (overpotential at 10 mA/cmgeo2) and stability to Rh2P. In contrast, for OER, all of the tested Ni2-xRhxP phases had similar overpotential values at 10 mA/cmgeo2, but these were >2x the initial value for Rh2P. However, the activity of Rh2P fades rapidly, as does Ni2P and Ni-rich Ni2-xRhxP phases, whereas Ni0.25Rh1.75P shows only modest declines. Overall water splitting (OWS) conducted using Ni0.25Rh1.75P as a catalyst relative to the state-of-the-art (RuO2||20% Pt/C) revealed comparable stabilities, with the Ni0.25Rh1.75P system demanding an additional 200 mV to achieve 10 mA/cmgeo2. In contrast, a Rh2P||Rh2P OWS cell had a similar initial overpotential to RuO2||20% Pt/C, but is unstable, completely deactivating over 140 min. Thus, Rh2P is not a stable anode for the OER in acidic media, but can be stabilized, albeit with a loss of activity, by incorporation of nominally modest amounts of Ni.

6.
Acc Chem Res ; 56(9): 1087-1096, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37078584

ABSTRACT

ConspectusMetal chalcogenide quantum dots (QDs) are prized for their unique and functional properties, associated with both intrinsic (quantum confinement) and extrinsic (high surface area) effects, as dictated by their size, shape, and surface characteristics. Thus, they have considerable promise for diverse applications, including energy conversion (thermoelectrics and photovoltaics), photocatalysis, and sensing. QD gels are macroscopic porous structures consisting of interconnected QDs and pore networks in which the pores may be filled with solvent (i.e., wet gels) or air (i.e., aerogels). QD gels are unique because they can be prepared as macroscale objects while fully retaining the size-specific quantum-confined properties of the initial QD building blocks. The extensive porosity of the gels also ensures that each QD in the gel network is accessible to the ambient, leading to high performance in applications that require high surface areas, such as (photo)catalysis and sensing.Metal chalcogenide QD gels are conventionally prepared by chemical approaches. We recently expanded the toolbox for QD gel synthesis by developing electrochemical gelation methods. Relative to conventional chemical oxidation approaches, electrochemical assembly of QDs (1) enables the use of two additional levers for tuning the QD assembly process and gel structure: electrode material and potential, and (2) allows direct gel formation on device substrates to simplify device fabrication and improve reproducibility. We have discovered two distinct electrochemical gelation methods, each of which enables the direct writing of gels on an active electrode surface or the formation of free-standing monoliths. Oxidative electrogelation of QDs leads to assemblies bridged by dichalcogenide (covalent) linkers, whereas metal-mediated electrogelation proceeds via electrodissolution of active metal electrodes to produce free ions that link QDs by binding to pendant carboxylate functionalities on surface ligands (non-covalent linkers). We further demonstrated that the electrogel composition produced from the covalent assembly could be modified by controlled ion exchange to form single-ion decorated bimetallic QD gels, a new category of materials. The QD gels exhibit unprecedented performance for NO2 gas sensing and unique photocatalytic reactivities (e.g., the "cyano dance" isomerization and the reductive ring-opening arylation). The chemistry unveiled during the development of electrochemical gelation pathways for QDs and their post-modification has broad implications for guiding the design of new nanoparticle assembly strategies and QD gel-based gas sensors and catalysts.

8.
ACS Nanosci Au ; 2(6): 503-519, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36573123

ABSTRACT

Transition metal phosphides (TMPs) are a highly investigated class of nanomaterials due to their unique magnetic and catalytic properties. Although robust and reproducible synthetic routes to narrow polydispersity monometallic phosphide nanoparticles (M2P; M = Fe, Co, Ni) have been established, the preparation of multimetallic nanoparticle phases (M2-x M' x P; M, M' = Fe, Co, Ni) remains a significant challenge. Colloidal syntheses employ zero-valent metal carbonyl or multivalent acetylacetonate salt precursors in combination with trioctylphosphine as the source of phosphorus, oleylamine as the reducing agent, and additional solvents such as octadecene or octyl ether as "noncoordinating" cosolvents. Understanding how these different metal precursors behave in identical reaction environments is critical to assessing the role the relative reactivity of the metal precursor plays in synthesizing complex, homogeneous multimetallic TMP phases. In this study, phosphorus incorporation as a function of temperature and time was evaluated to probe how the relative rate of phosphidation of organometallic carbonyl and acetylacetonate salt precursors influences the homogeneous formation of bimetallic phosphide phases (M2-x M' x P; M, M' = Fe, Co, Ni). From the relative rate of phosphidation studies, we found that where reactivity with TOP for the various metal precursors differs significantly, prealloying steps are necessary to isolate the desired bimetallic phosphide phase. These insights were then translated to establish streamlined synthetic protocols for the formation of new trimetallic Fe2-x-y Ni x Co y P phases.

11.
Nanoscale ; 13(48): 20625-20636, 2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34877956

ABSTRACT

Relative to conventional chemical approaches, electrochemical assembly of metal chalcogenide nanoparticles enables the use of two additional levers for tuning the assembly process: electrode material and potential. In our prior work, oxidative and metal-mediated pathways for electrochemical assembly of metal chalcogenide quantum dots (QDs) into three-dimensional gel architectures were investigated independently by employing a noble-metal (Pt) electrode at relatively high potentials and a non-noble metal electrode at relatively low potentials, respectively. In the present work, we reveal competition between the two electrogelation pathways under the condition of high oxidation potentials and non-noble metal electrodes (including Ni, Co, Zn, and Ag), where both pathways are active. We found that the electrogel structure formed under this condition is electrode material-dependent. For Ni, the major phase is oxidative electrogel, not a potential-dependent mixture of oxidative and metal-mediated electrogel that one would expect. A mechanistic study reveals that the metal-mediated electrogelation is suppressed by dithiolates, a side product from the oxidative electrogelation, which block the Ni electrode surface and terminate metal ion release. In contrast, for Co, Ag, and Zn, the electrode surface blockage by dithiolates is less effective than for Ni, such that metal-mediated electrogelation is the primary gelation pathway.

12.
ACS Sens ; 6(12): 4389-4397, 2021 12 24.
Article in English | MEDLINE | ID: mdl-34784175

ABSTRACT

Slow response and recovery kinetics is a major challenge for practical room-temperature NO2 gas sensing. Here, we report the use of visible light illumination to significantly shorten the response and recovery times of a PbSe quantum dot (QD) gel sensor by 21% (to 27 s) and 63% (to 102 s), respectively. When combined with its high response (0.04%/ppb) and ultralow limit of detection (3 ppb), the reduction in response and recovery time makes the PbSe QD gel sensor among the best p-type room-temperature NO2 sensors reported to date. A combined experimental and theoretical investigation reveals that the accelerated response and recovery time is primarily due to photoexcitation of NO2 gaseous molecules and adsorbed NO2 on the gel surface, rather than the excitation of the semiconductor sensing material, as suggested by the currently prevailing light-activated gas-sensing theory. Furthermore, we find that the extent of improvement attained in the recovery speed also depends on the distribution of excited electrons in the adsorbed NO2/QD gel system. This work suggests that the design of light-activated sensor platforms may benefit from a careful assessment of the photophysics of the analyte in the gas phase and when adsorbed onto the semiconductor surface.


Subject(s)
Nitrogen Dioxide , Quantum Dots , Gases , Kinetics , Temperature
13.
Nat Commun ; 12(1): 4895, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34385446

ABSTRACT

Atmospheric NO2 is of great concern due to its adverse effects on human health and the environment, motivating research on NO2 detection and remediation. Existing low-cost room-temperature NO2 sensors often suffer from low sensitivity at the ppb level or long recovery times, reflecting the trade-off between sensor response and recovery time. Here, we report an atomically dispersed metal ion strategy to address it. We discover that bimetallic PbCdSe quantum dot (QD) gels containing atomically dispersed Pb ionic sites achieve the optimal combination of strong sensor response and fast recovery, leading to a high-performance room-temperature p-type semiconductor NO2 sensor as characterized by a combination of ultra-low limit of detection, high sensitivity and stability, fast response and recovery. With the help of theoretical calculations, we reveal the high performance of the PbCdSe QD gel arises from the unique tuning effects of Pb ionic sites on NO2 binding at their neighboring Cd sites.

15.
ACS Mater Au ; 1(1): 1-2, 2021 Sep 08.
Article in English | MEDLINE | ID: mdl-36855622
16.
J Am Chem Soc ; 142(28): 12207-12215, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32492331

ABSTRACT

The ability to dictate the assembly of quantum dots (QDs) is critical for their integration into solid-state electronic and optoelectronic devices. However, assembly methods that enable efficient electronic communication between QDs, facilitate access to the reactive surface, and retain the native quantum confinement characteristics of the QD are lacking. Here we introduce a universal and facile electrochemical gelation method for assembling metal chalcogenide QDs (as demonstrated for CdS, ZnS, and CdSe) into macroscale 3-D connected pore-matter nanoarchitectures that remain quantum confined and in which each QD is accessible to the ambient. Because of the redox-active nature of the bonding between QD building blocks in the gel network, the electrogelation process is reversible. We further demonstrate the application of this electrogelation method for a one-step fabrication of CdS gel gas sensors, producing devices with exceptional performance for NO2 gas sensing at room temperature, thereby enabling the development of low-cost, sensitive, and reliable devices for air quality monitoring.


Subject(s)
Cadmium Compounds/chemical synthesis , Electrochemical Techniques , Quantum Dots/chemistry , Selenium Compounds/chemical synthesis , Sulfides/chemical synthesis , Zinc Compounds/chemical synthesis , Cadmium Compounds/chemistry , Gels/chemical synthesis , Gels/chemistry , Particle Size , Selenium Compounds/chemistry , Sulfides/chemistry , Surface Properties , Zinc Compounds/chemistry
17.
Chem Commun (Camb) ; 56(3): 458-461, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31825425

ABSTRACT

Kinetic control of metal chalcogenide nanoparticle oxidative assembly is realized by varying the redox potential of the chalcogenide, structure (wurtzite vs. zinc blende), and ligand chain length. This knowledge is exploited to form two-component (ZnS + CdSe) hybrid aerogels with minimal heterobonding (phase-segregated) or maximal heterobonding (intimately mixed).

18.
J Chem Phys ; 151(23): 234715, 2019 Dec 21.
Article in English | MEDLINE | ID: mdl-31864264

ABSTRACT

The versatility of the oxidative assembly method for the creation of 2D and 3D quantum dot (QD) architectures represents both an opportunity and a challenge as a method enabling controlled placement of chemically distinct QDs in multicomponent systems. The opportunity lies in the ability to independently tune the kinetics of the different components so that they are similar (leading to well-mixed systems) or different (enabling gradient or phase-segregated composites) using a wide range of variables; the challenge lies in understanding those variables and how their interplay affects the overall kinetics. Here, we show that the identity of the cation in the sulfide matrix (M = Cd2+ vs Zn2+) plays a large role in the kinetics of assembly of mass spectrometry QDs, attributed to differences in solubility. Time resolved dynamic light scattering is used to monitor the hydrodynamic radius, R¯h. ZnS shows an exponential growth associated with reaction-limited cluster aggregation (RLCA), whereas CdS demonstrates a significant induction period (10-75 min) followed by a growth step that cannot be distinguished between RLCA and diffusion limited cluster aggregation. These data correlate with relative solubilities of the nanoparticles, as probed by free-cation concentration. Data also confirm prior studies showing that cubic-closest-packed (ccp) lattices are kinetically slow relative to hexagonally closest-packed (hcp); using the slope of the ln R¯h vs time plot for the rate constant, the values of 0.510 s-1 and 3.92 s-1 are obtained for ccp ZnS and hcp ZnS, respectively. Thus, both the structure and the solubility are effective levers for adjusting the relative reactivity of QDs toward oxidative assembly.

19.
Nanoscale ; 11(14): 6886-6896, 2019 Apr 04.
Article in English | MEDLINE | ID: mdl-30912780

ABSTRACT

A new approach to the solution-phase synthesis of manganese antimonide nanoparticles was developed to reduce competitive oxide formation by exploitation of sodium borohydride (NaBH4) (0.53-2.64 mmol) as a sacrificial reductant. However, in the presence of near-stoichiometric precursor amounts of manganese carbonyl and triphenyl antimony, the introduction of NaBH4 results in a different growth mechanism, Solution-Solid-Solid (SSS), leading to tadpole-shaped manganese antimonide nanoparticles with antimony-rich heads and stoichiometric manganese antimonide tails. We hypothesize that a solid antimony-rich manganese antimonide cluster acts as an initiator to tail growth in solution. Notably, the length of the tail correlated with the amount of NaBH4 used. Interestingly, these anisotropic particles can be transformed progressively into spherical-shaped nanoparticles upon the addition of excess manganese carbonyl. The anisotropic manganese antimonide particles possess saturation magnetizations ca. twenty times higher than that reported for MnSb nanoparticles prepared without NaBH4, attributed to limitation of oxidation.

20.
Langmuir ; 34(22): 6470-6479, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29747511

ABSTRACT

Colloidal nanocrystals (NCs) compete with molecular catalysts in the field of homogenous catalysis, offering easier recyclability and a number of potentially advantageous functionalities, such as tunable band gaps, plasmonic properties, or a magnetic moment. Using high-throughput printing technologies, colloidal NCs can also be supported onto substrates to produce cost-effective electronic, optoelectronic, electrocatalytic, and sensing devices. For both catalytic and technological application, NC surface chemistry and supracrystal organization are key parameters determining final performance. Here, we study the influence of the surface ligands and the NC organization on the catalytic properties of In2S3, both as a colloid and as a supported layer. As a colloid, NCs stabilized by inorganic ligands show the highest photocatalytic activities, which we associate with their large and more accessible surfaces. On the other hand, when NCs are supported on a substrate, their organization becomes an essential parameter determining performance. For instance, NC-based films produced through a gelation process provided five-fold higher photocurrent densities than those obtained from dense films produced by the direct printing of NCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...