Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Regul Toxicol Pharmacol ; 130: 105127, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35124137

ABSTRACT

In vitro studies have shown that cobalt substances predominantly induce pre-inflammatory biomarkers, resulting in a grouping of substances either predicted to cause inflammation following inhalation, or those with a different reactivity profile (poorly-reactive). There is a lack of data on whole-organ lung responses following inhalation of these substances, especially relating to the poorly-reactive group. It is of interest to generate tissue-specific histopathological correlation to better ascertain the predictive nature of the lower tier tests (i.e. tier 1 - bioelution, tiers 2a and b - in vitro markers and ToxTracker testing), in order to understand the type of effects caused by the poorly-reactive group and to gauge long-term effects. Eight cobalt substances were tested in vivo in a customized 4-h toxicity test; with animals sacrificed up to 14-days post-exposure. Histopathological severity scores were assigned based on inflammatory and pre-carcinogenic markers. A clear pattern emerged, with the reactive substances causing a persistent increase in one or more of the selected markers, and absence of these markers with poorly-reactive substances. Longer-term studies should be conducted to investigate the repeated dose effects of the poorly-reactive substances.


Subject(s)
Cobalt/toxicity , Inhalation Exposure/adverse effects , Lung/drug effects , Pneumonia/pathology , Animals , Biomarkers, Tumor , Dose-Response Relationship, Drug , Female , Inflammation Mediators/metabolism , Male , Particle Size , Rats , Rats, Sprague-Dawley , Toxicity Tests
2.
Regul Toxicol Pharmacol ; 70(1): 170-81, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24979734

ABSTRACT

Bioelution assays are fast, simple alternatives to in vivo testing. In this study, the intra- and inter-laboratory variability in bioaccessibility data generated by bioelution tests were evaluated in synthetic fluids relevant to oral, inhalation, and dermal exposure. Using one defined protocol, five laboratories measured metal release from cobalt oxide, cobalt powder, copper concentrate, Inconel alloy, leaded brass alloy, and nickel sulfate hexahydrate. Standard deviations of repeatability (sr) and reproducibility (sR) were used to evaluate the intra- and inter-laboratory variability, respectively. Examination of the sR:sr ratios demonstrated that, while gastric and lysosomal fluids had reasonably good reproducibility, other fluids did not show as good concordance between laboratories. Relative standard deviation (RSD) analysis showed more favorable reproducibility outcomes for some data sets; overall results varied more between- than within-laboratories. RSD analysis of sr showed good within-laboratory variability for all conditions except some metals in interstitial fluid. In general, these findings indicate that absolute bioaccessibility results in some biological fluids may vary between different laboratories. However, for most applications, measures of relative bioaccessibility are needed, diminishing the requirement for high inter-laboratory reproducibility in absolute metal releases. The inter-laboratory exercise suggests that the degrees of freedom within the protocol need to be addressed.


Subject(s)
Body Fluids/metabolism , Laboratories/standards , Metals/analysis , Humans , Metals/chemistry , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...