Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Genomics ; 17(1): 70, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37507754

ABSTRACT

BACKGROUND: ALS is a heterogeneous disease in which different factors such as mitochondrial phenotypes act in combination with a genetic predisposition. This study addresses the question of whether homoplasmic (total mitochondrial genome of a sample is affected) and/or heteroplasmic mutations (wildtype and mutant mitochondrial DNA molecules coexist) might play a role in familial ALS. Blood was drawn from familial ALS patients with a possible maternal pattern of inheritance according to their pedigrees, which was compared to blood of ALS patients without maternal association as well as age-matched controls. In two cohorts, we analyzed the mitochondrial genome from whole blood or isolated white blood cells and platelets using a resequencing microarray (Affymetrix MitoChip v2.0) that is able to detect homoplasmic and heteroplasmic mitochondrial DNA mutations and allows the assessment of low-level heteroplasmy. RESULTS: We identified an increase in homoplasmic ND5 mutations, a subunit of respiratory chain complex I, in whole blood of ALS patients that allowed maternal inheritance. This effect was more pronounced in patients with bulbar onset. Heteroplasmic mutations were significantly increased in different mitochondrial genes in platelets of patients with possible maternal inheritance. No increase of low-level heteroplasmy was found in maternal ALS patients. CONCLUSION: Our results indicate a contribution of homoplasmic ND5 mutations to maternally associated ALS with bulbar onset. Therefore, it might be conceivable that specific maternally transmitted rather than randomly acquired mitochondrial DNA mutations might contribute to the disease process. This stands in contrast with observations from Alzheimer's and Parkinson's diseases showing an age-dependent accumulation of unspecific mutations in mitochondrial DNA.


Subject(s)
Amyotrophic Lateral Sclerosis , Genome, Mitochondrial , Humans , Genome, Mitochondrial/genetics , Maternal Inheritance/genetics , Amyotrophic Lateral Sclerosis/genetics , DNA, Mitochondrial/genetics , Mitochondria/genetics , Mutation
2.
Cells ; 10(4)2021 04 02.
Article in English | MEDLINE | ID: mdl-33918274

ABSTRACT

Accumulating evidence suggests that microRNAs (miRNAs) are a contributing factor to neurodegenerative diseases. Although altered miRNA profiles in serum or plasma have been reported for several neurodegenerative diseases, little is known about the interaction between dysregulated miRNAs and their protein binding partners. We found significant alterations of the miRNA abundance pattern in serum and in isolated serum-derived extracellular vesicles of Parkinson's disease (PD) patients. The differential expression of miRNA in PD patients was more robust in serum than in isolated extracellular vesicles and could separate PD patients from healthy controls in an unsupervised approach to a high degree. We identified a novel protein interaction partner for the strongly dysregulated hsa-mir-4745-5p. Our study provides further evidence for the involvement of miRNAs and HNF4a in PD. The demonstration that miRNA-protein binding might mediate the pathologic effects of HNF4a both by direct binding to it and by binding to proteins regulated by it suggests a complex role for miRNAs in pathology beyond the dysregulation of transcription.


Subject(s)
MicroRNAs/blood , Parkinson Disease/blood , Parkinson Disease/genetics , Proteins/metabolism , Aged , Case-Control Studies , Exosomes/genetics , Female , Gene Expression Profiling , Gene Expression Regulation , Humans , Male , MicroRNAs/genetics , Middle Aged , Principal Component Analysis , Protein Binding
3.
Brain ; 144(4): 1214-1229, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33871026

ABSTRACT

Knowledge about converging disease mechanisms in the heterogeneous syndrome amyotrophic lateral sclerosis (ALS) is rare, but may lead to therapies effective in most ALS cases. Previously, we identified serum microRNAs downregulated in familial ALS, the majority of sporadic ALS patients, but also in presymptomatic mutation carriers. A 5-nucleotide sequence motif (GDCGG; D = G, A or U) was strongly enriched in these ALS-related microRNAs. We hypothesized that deregulation of protein(s) binding predominantly to this consensus motif was responsible for the ALS-linked microRNA fingerprint. Using microRNA pull-down assays combined with mass spectrometry followed by extensive biochemical validation, all members of the fragile X protein family, FMR1, FXR1 and FXR2, were identified to directly and predominantly interact with GDCGG microRNAs through their structurally disordered RGG/RG domains. Preferential association of this protein family with ALS-related microRNAs was confirmed by in vitro binding studies on a transcriptome-wide scale. Immunohistochemistry of lumbar spinal cord revealed aberrant expression level and aggregation of FXR1 and FXR2 in C9orf72- and FUS-linked familial ALS, but also patients with sporadic ALS. Further analysis of ALS autopsies and induced pluripotent stem cell-derived motor neurons with FUS mutations showed co-aggregation of FXR1 with FUS. Hence, our translational approach was able to take advantage of blood microRNAs to reveal CNS pathology, and suggests an involvement of the fragile X-related proteins in familial and sporadic ALS already at a presymptomatic stage. The findings may uncover disease mechanisms relevant to many patients with ALS. They furthermore underscore the systemic, extra-CNS aspect of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Fragile X Mental Retardation Protein/metabolism , MicroRNAs/blood , MicroRNAs/genetics , RNA-Binding Proteins/metabolism , Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/genetics , Humans , RNA-Binding Protein FUS/genetics
4.
J Exp Med ; 216(2): 267-278, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30635357

ABSTRACT

Heterozygous loss-of-function mutations of TANK-binding kinase 1 (TBK1 ) cause familial ALS, yet downstream mechanisms of TBK1 mutations remained elusive. TBK1 is a pleiotropic kinase involved in the regulation of selective autophagy and inflammation. We show that heterozygous Tbk1 deletion alone does not lead to signs of motoneuron degeneration or disturbed autophagy in mice during a 200-d observation period. Surprisingly, however, hemizygous deletion of Tbk1 inversely modulates early and late disease phases in mice additionally overexpressing ALS-linked SOD1G93A , which represents a "second hit" that induces both neuroinflammation and proteostatic dysregulation. At the early stage, heterozygous Tbk1 deletion impairs autophagy in motoneurons and prepones both the clinical onset and muscular denervation in SOD1G93A/Tbk1+/- mice. At the late disease stage, however, it significantly alleviates microglial neuroinflammation, decelerates disease progression, and extends survival. Our results indicate a profound effect of TBK1 on brain inflammatory cells under pro-inflammatory conditions and point to a complex, two-edged role of TBK1 in SOD1-linked ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Brain , Gene Deletion , Motor Neurons , Protein Serine-Threonine Kinases , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Autophagic Cell Death/genetics , Brain/metabolism , Brain/pathology , Loss of Function Mutation , Mice , Mice, Knockout , Microglia/metabolism , Microglia/pathology , Motor Neurons/metabolism , Motor Neurons/pathology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
5.
Cell Mol Life Sci ; 75(23): 4301-4319, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30030593

ABSTRACT

Genetic and functional studies suggest diverse pathways being affected in the neurodegenerative disease amyotrophic lateral sclerosis (ALS), while knowledge about converging disease mechanisms is rare. We detected a downregulation of microRNA-1825 in CNS and extra-CNS system organs of both sporadic (sALS) and familial ALS (fALS) patients. Combined transcriptomic and proteomic analysis revealed that reduced levels of microRNA-1825 caused a translational upregulation of tubulin-folding cofactor b (TBCB). Moreover, we found that excess TBCB led to depolymerization and degradation of tubulin alpha-4A (TUBA4A), which is encoded by a known ALS gene. Importantly, the increase in TBCB and reduction of TUBA4A protein was confirmed in brain cortex tissue of fALS and sALS patients, and led to motor axon defects in an in vivo model. Our discovery of a microRNA-1825/TBCB/TUBA4A pathway reveals a putative pathogenic cascade in both fALS and sALS extending the relevance of TUBA4A to a large proportion of ALS cases.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Gene Expression Profiling , Genetic Predisposition to Disease/genetics , MicroRNAs/genetics , Microtubule-Associated Proteins/genetics , Tubulin/genetics , Aged , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Brain/metabolism , Brain/pathology , Cells, Cultured , Female , HEK293 Cells , Humans , Male , Mice, Inbred C57BL , Microtubule-Associated Proteins/metabolism , Middle Aged , Tubulin/metabolism
6.
Hum Mol Genet ; 27(4): 706-715, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29315381

ABSTRACT

Mutations in the mitochondrially located protein CHCHD10 cause motoneuron disease by an unknown mechanism. In this study, we investigate the mutations p.R15L and p.G66V in comparison to wild-type CHCHD10 and the non-pathogenic variant p.P34S in vitro, in patient cells as well as in the vertebrate in vivo model zebrafish. We demonstrate a reduction of CHCHD10 protein levels in p.R15L and p.G66V mutant patient cells to approximately 50%. Quantitative real-time PCR revealed that expression of CHCHD10 p.R15L, but not of CHCHD10 p.G66V, is already abrogated at the mRNA level. Altered secondary structure and rapid protein degradation are observed with regard to the CHCHD10 p.G66V mutant. In contrast, no significant differences in expression, degradation rate or secondary structure of non-pathogenic CHCHD10 p.P34S are detected when compared with wild-type protein. Knockdown of CHCHD10 expression in zebrafish to about 50% causes motoneuron pathology, abnormal myofibrillar structure and motility deficits in vivo. Thus, our data show that the CHCHD10 mutations p.R15L and p.G66V cause motoneuron disease primarily based on haploinsufficiency of CHCHD10.


Subject(s)
Haploinsufficiency/physiology , Mitochondrial Proteins/metabolism , Motor Neuron Disease/metabolism , Animals , DNA, Complementary/genetics , DNA, Complementary/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Haploinsufficiency/genetics , Humans , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Motor Neuron Disease/genetics , Mutation/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Zebrafish , Zebrafish Proteins/chemistry , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...