Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(20): 32717-32726, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37859067

ABSTRACT

Quantum photonic processing via electro-optic components typically requires electronic links across different operation environments, especially when interfacing cryogenic components such as superconducting single photon detectors with room-temperature control and readout electronics. However, readout and driving electronics can introduce detrimental parasitic effects. Here we show an all-optical control and readout of a superconducting nanowire single photon detector (SNSPD), completely electrically decoupled from room temperature electronics. We provide the operation power for the superconducting detector via a cryogenic photodiode, and readout single photon detection signals via a cryogenic electro-optic modulator in the same cryostat. This method opens the possibility for control and readout of superconducting circuits, and feedforward for photonic quantum computing.

2.
Opt Express ; 28(17): 24353-24362, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32906977

ABSTRACT

Integrated χ(2) devices are a widespread tool for the generation and manipulation of light fields, since they exhibit high efficiency, a small footprint and the ability to interface them with fibre networks. Surprisingly, some commonly used material substrates are not yet fully understood, in particular potassium titanyl phosphate (KTP). A thorough understanding of the fabrication process of waveguides in this material and analysis of their properties is crucial for the realization and the engineering of high efficiency devices for quantum applications. In this paper we present our studies on rubidium-exchanged waveguides fabricated in KTP. Employing energy dispersive X-ray spectroscopy (EDX), we analysed a set of waveguides fabricated with different production parameters in terms of time and temperature. We find that the waveguide depth is dependent on their widths by reconstructing the waveguide depth profiles. Narrower waveguides are deeper, contrary to the theoretical model usually employed. Moreover, we found that the variation of the penetration depth with the waveguide width is stronger at higher temperatures and times. We attribute this behaviour to stress-induced variation in the diffusion process.

SELECTION OF CITATIONS
SEARCH DETAIL
...