Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 364: 121295, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38875991

ABSTRACT

Flood modelling and forecasting can enhance our understanding of flood mechanisms and facilitate effective management of flood risk. Conventional flood hazard and risk assessments usually consider one driver at a time, whether it is ocean, fluvial or pluvial, without considering the compound nature of flood events. In this paper, we developed a novel approach for modelling and forecasting compound coastal-fluvial floods using a two-step framework. In step one, a hydrodynamic model is used to simulate floodwater propagation; while in step two, machine learning (ML) models are used to generate flood forecasts. The architecture of hydrodynamic-ML forecasting system incorporates a hydrodynamic model covering a specific domain, with individual ML models trained for each pixel. In total 7 ML models including: Support Vector Regression (SVR), Support Vector Machine (SVM), Radial Basis Function (RBF), Linear Regression (LR), Gaussian Process Regression (GPR), Decision Tree (DT), and Artificial Neural Network (ANN) were applied in this study. Forecasting compound floods is achieved using two sets of inputs: timeseries of river discharges in the upstream fluvial section and downstream ocean water levels in the coastal areas. The accuracy of the flood forecasting system is demonstrated for Cork City, Ireland; and modelling performance was evaluated using several statistical tools. Results show that the proposed models can provide reliable estimates of flood inundation and associated water depths. Overall, the RBF model exhibits the best performance. Despite the complexity of compound multi-driver floods, this study shows that the coupled hydrodynamic-ML approach can forecast coastal-fluvial flood with limited hydraulic and hydrological input data. This system overcomes the limitations of traditional hydrodynamic model-based systems where trade-offs between the always competing numerical model accuracy and computational time prohibit the model to be used for short-term flood forecasting. Once trained, the ML component of the coupled system can perform flood forecasting in near real-time, potentially integrating into a flood early warning system. Accurate flood forecasting has a wide range of positive societal impacts, including improved flood preparedness, increased confidence, better resource allocation, reduced flood damage, and potentially even flood prevention.


Subject(s)
Floods , Forecasting , Machine Learning , Support Vector Machine , Neural Networks, Computer , Models, Theoretical , Rivers , Oceans and Seas
2.
Int J Climatol ; 40(1): 610-619, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32025091

ABSTRACT

Globally, few precipitation records extend to the 18th century. The England Wales Precipitation (EWP) series is a notable exception with continuous monthly records from 1766. EWP has found widespread use across diverse fields of research including trend detection, evaluation of climate model simulations, as a proxy for mid-latitude atmospheric circulation, a predictor in long-term European gridded precipitation data sets, the assessment of drought and extremes, tree-ring reconstructions and as a benchmark for other regional series. A key finding from EWP has been the multi-centennial trends towards wetter winters and drier summers. We statistically reconstruct seasonal EWP using independent, quality-assured temperature, pressure and circulation indices. Using a sleet and snow series for the UK derived by Profs. Gordon Manley and Elizabeth Shaw to examine winter reconstructions, we show that precipitation totals for pre-1870 winters are likely biased low due to gauge under-catch of snowfall and a higher incidence of snowfall during this period. When these factors are accounted for in our reconstructions, the observed trend to wetter winters in EWP is no longer evident. For summer, we find that pre-1820 precipitation totals are too high, likely due to decreasing network density and less certain data at key stations. A significant trend to drier summers is not robustly present in our reconstructions of the EWP series. While our findings are more certain for winter than summer, we highlight (a) that extreme caution should be exercised when using EWP to make inferences about multi-centennial trends, and; (b) that assessments of 18th and 19th Century winter precipitation should be aware of potential snow biases in early records. Our findings underline the importance of continual re-appraisal of established long-term climate data sets as new evidence becomes available. It is also likely that the identified biases in winter EWP have distorted many other long-term European precipitation series.

3.
Water Resour Res ; 55(2): 1079-1104, 2019 Feb.
Article in English | MEDLINE | ID: mdl-31007298

ABSTRACT

This study develops a coherent framework to detect those catchment types associated with a high risk of maladaptation to future flood risk. Using the "scenario-neutral" approach to impact assessment the sensitivity of Irish catchments to fluvial flooding is examined in the context of national climate change allowances. A predefined sensitivity domain is used to quantify flood responses to +2 °C mean annual temperature with incremental changes in the seasonality and mean of the annual precipitation cycle. The magnitude of the 20-year flood is simulated at each increment using two rainfall-runoff models (GR4J, NAM), then concatenated as response surfaces for 35 sample catchments. A typology of catchment sensitivity is developed using clustering and discriminant analysis of physical attributes. The same attributes are used to classify 215 ungauged/data-sparse catchments. To address possible redundancies, the exposure of different catchment types to projected climate is established using an objectively selected subset of the Coupled Model Intercomparison Project Phase 5 ensemble. Hydrological model uncertainty is shown to significantly influence sensitivity and have a greater effect than ensemble bias. A national flood risk allowance of 20%, considering all 215 catchments is shown to afford protection against ~48% to 98% of the uncertainty in the Coupled Model Intercomparison Project Phase 5 subset (Representative Concentration Pathway 8.5; 2070-2099), irrespective of hydrological model and catchment type. However, results indicate that assuming a standard national or regional allowance could lead to local over/under adaptation. Herein, catchments with relatively less storage are sensitive to seasonal amplification in the annual cycle of precipitation and warrant special attention.

SELECTION OF CITATIONS
SEARCH DETAIL
...