Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
4.
Immunol Rev ; 322(1): 259-282, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38146057

ABSTRACT

From studies of individual families to global collaborative efforts, the NLRP3 inflammasome is now recognized to be a key regulator of innate immunity. Activated by a panoply of pathogen-associated and endogenous triggers, NLRP3 serves as an intracellular sensor that drives carefully coordinated assembly of the inflammasome, and downstream inflammation mediated by IL-1 and IL-18. Initially discovered as the cause of the autoinflammatory spectrum of cryopyrin-associated periodic syndrome (CAPS), NLRP3 is now also known to play a role in more common diseases including cardiovascular disease, gout, and liver disease. We have seen cohesion in results from clinical studies in CAPS patients, ex vivo studies of human cells and murine cells, and in vivo murine models leading to our understanding of the downstream pathways, cytokine secretion, and cell death pathways that has solidified the role of autoinflammation in the pathogenesis of human disease. Recent advances in our understanding of the structure of the inflammasome have provided ways for us to visualize normal and mutant protein function and pharmacologic inhibition. The subsequent development of targeted therapies successfully used in the treatment of patients with CAPS completes the bench to bedside translational loop which has defined the study of this unique protein.


Subject(s)
Cryopyrin-Associated Periodic Syndromes , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Mice , Animals , Cryopyrin-Associated Periodic Syndromes/drug therapy , Cryopyrin-Associated Periodic Syndromes/pathology , Inflammasomes/metabolism , Immunity, Innate , Inflammation , Interleukin-1beta/metabolism
5.
Cureus ; 15(11): e48222, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38054159

ABSTRACT

Febrile infection-related epilepsy syndrome (FIRES) is a rare epileptic syndrome characterized by new-onset refractory status epilepticus preceded by a febrile illness. Limited literature exists regarding the relationship between primary immunodeficiencies and immune-mediated epilepsy, and the relationship between new-onset refractory status epilepticus and common variable immunodeficiency (CVID) is not well-understood. We present a case of a 21-year-old female with a history of recurrent sinus infections, asthma, thrombocytopenia, atrioventricular nodal reentrant tachycardia, and neonatal seizures who presented with fever and new-onset status epilepticus. She was ultimately diagnosed with a heterozygous variant in TNFRSF13B c.311G>A (p.Cys104Tyr), which encodes for a tumor necrosis factor receptor implicated in CVID.

6.
7.
J Allergy Clin Immunol Pract ; 11(8): 2275-2285, 2023 08.
Article in English | MEDLINE | ID: mdl-37290539

ABSTRACT

Cold urticaria is a chronic condition causing episodic symptoms of cold-induced wheals or angioedema in response to direct or indirect exposure to cold temperatures. Whereas symptoms of cold urticaria are typically benign and self-limiting, severe systemic anaphylactic reactions are possible. Acquired, atypical, and hereditary forms have been described, each with variable triggers, symptoms, and responses to therapy. Clinical testing, including response to cold stimulation, helps define disease subtypes. More recently, monogenic disorders characterized by atypical forms of cold urticaria have been described. Here, we review the different forms of cold-induced urticaria and related syndromes and propose a diagnostic algorithm to aid clinicians in making a timely diagnosis for the appropriate management of these patients.


Subject(s)
Angioedema , Urticaria , Humans , Syndrome , Urticaria/diagnosis , Urticaria/therapy , Urticaria/etiology , Angioedema/diagnosis , Cold Temperature , Diagnosis, Differential
8.
J Immunol ; 211(2): 287-294, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37256266

ABSTRACT

Antisense oligonucleotides (ASOs) are a novel therapeutic strategy that targets a specific gene and suppresses its expression. The cryopyrin-associated periodic syndromes (CAPS) are a spectrum of autoinflammatory diseases characterized by systemic and tissue inflammation that is caused by heterozygous gain-of-function mutations in the nucleotide-binding and oligomerization domain-like receptor (NLR) family pyrin domain containing 3 (NLRP3) gene. The aim of this study was to investigate the efficacy of an Nlrp3-specific ASO treatment in CAPS. An Nlrp3-specific ASO was designed and tested in murine cell lines and bone marrow-derived macrophages (BMDMs) from wild-type and CAPS mouse models. Nlrp3 knock-in mice were treated in vivo with Nlrp3-specific ASO, survival was monitored, and expression of organ-specific Nlrp3 and IL-1ß was measured. Nlrp3-specific ASO treatment of murine cell lines and BMDMs showed a significant downregulation of Nlrp3 and mature IL-1ß protein expression. Ex vivo treatment of Nlrp3 mutant mouse-derived BMDMs with Nlrp3-specific ASO demonstrated significantly reduced IL-1ß release. In vivo, Nlrp3-specific ASO treatment of Nlrp3 mutant mice prolonged survival, reduced systemic inflammation, and decreased tissue-specific expression of Nlrp3 and mature IL-1ß protein. The results of this study demonstrate that Nlrp3-specific ASO treatment downregulates Nlrp3 expression and IL-1ß release in CAPS models, suggesting ASO therapy as a potential treatment of CAPS and other NLRP3-mediated diseases.


Subject(s)
Cryopyrin-Associated Periodic Syndromes , NLR Family, Pyrin Domain-Containing 3 Protein , Mice , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Cryopyrin-Associated Periodic Syndromes/genetics , Inflammation , Carrier Proteins/genetics , Interleukin-1beta/metabolism
9.
N Engl J Med ; 388(24): 2241-2252, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37256972

ABSTRACT

BACKGROUND: Disabling pansclerotic morphea (DPM) is a rare systemic inflammatory disorder, characterized by poor wound healing, fibrosis, cytopenias, hypogammaglobulinemia, and squamous-cell carcinoma. The cause is unknown, and mortality is high. METHODS: We evaluated four patients from three unrelated families with an autosomal dominant pattern of inheritance of DPM. Genomic sequencing independently identified three heterozygous variants in a specific region of the gene that encodes signal transducer and activator of transcription 4 (STAT4). Primary skin fibroblast and cell-line assays were used to define the functional nature of the genetic defect. We also assayed gene expression using single-cell RNA sequencing of peripheral-blood mononuclear cells to identify inflammatory pathways that may be affected in DPM and that may respond to therapy. RESULTS: Genome sequencing revealed three novel heterozygous missense gain-of-function variants in STAT4. In vitro, primary skin fibroblasts showed enhanced interleukin-6 secretion, with impaired wound healing, contraction of the collagen matrix, and matrix secretion. Inhibition of Janus kinase (JAK)-STAT signaling with ruxolitinib led to improvement in the hyperinflammatory fibroblast phenotype in vitro and resolution of inflammatory markers and clinical symptoms in treated patients, without adverse effects. Single-cell RNA sequencing revealed expression patterns consistent with an immunodysregulatory phenotype that were appropriately modified through JAK inhibition. CONCLUSIONS: Gain-of-function variants in STAT4 caused DPM in the families that we studied. The JAK inhibitor ruxolitinib attenuated the dermatologic and inflammatory phenotype in vitro and in the affected family members. (Funded by the American Academy of Allergy, Asthma, and Immunology Foundation and others.).


Subject(s)
Autoimmune Diseases , Dermatologic Agents , Janus Kinases , Scleroderma, Systemic , Janus Kinases/antagonists & inhibitors , Nitriles , Pyrazoles/therapeutic use , Pyrazoles/pharmacology , Pyrimidines , Scleroderma, Systemic/drug therapy , Scleroderma, Systemic/genetics , Autoimmune Diseases/drug therapy , Autoimmune Diseases/genetics , Mutation, Missense , Gain of Function Mutation , Dermatologic Agents/therapeutic use , Anti-Inflammatory Agents/therapeutic use
10.
J Allergy Clin Immunol Pract ; 11(6): 1676-1687, 2023 06.
Article in English | MEDLINE | ID: mdl-36958521

ABSTRACT

Children and adults with autoinflammatory disorders, who often experience recurrent fevers, rashes, cold-induced symptoms, conjunctivitis, lymphadenopathy, recurrent infections, aphthous stomatitis, and abnormal blood cell counts, may present to the allergist/immunologist because the symptoms mimic allergies and disorders of immunity. In recent years, there has been increased recognition of non-monogenic autoinflammatory disorders, including periodic fever, aphthous stomatitis, pharyngitis, and adenitis syndrome and syndrome of undifferentiated recurrent fevers. For many clinical practitioners, the natural history, diagnostic criteria, differential diagnoses, and preferred therapies remain challenging because of the presumed rarity of patients and the evolving field of autoinflammation. Here, we aim to provide a practical framework for the clinical allergist/immunologist to evaluate and treat this patient population.


Subject(s)
Lymphadenitis , Lymphadenopathy , Nasopharyngitis , Pharyngitis , Stomatitis, Aphthous , Humans , Child , Adult , Stomatitis, Aphthous/diagnosis , Stomatitis, Aphthous/therapy , Lymphadenitis/diagnosis , Pharyngitis/diagnosis , Pharyngitis/therapy , Fever/diagnosis , Syndrome
12.
N Engl J Med ; 387(25): 2344-2355, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36546626

ABSTRACT

BACKGROUND: The DNA-repair enzyme Artemis is essential for rearrangement of T- and B-cell receptors. Mutations in DCLRE1C, which encodes Artemis, cause Artemis-deficient severe combined immunodeficiency (ART-SCID), which is poorly responsive to allogeneic hematopoietic-cell transplantation. METHODS: We carried out a phase 1-2 clinical study of the transfusion of autologous CD34+ cells, transfected with a lentiviral vector containing DCLRE1C, in 10 infants with newly diagnosed ART-SCID. We followed them for a median of 31.2 months. RESULTS: Marrow harvest, busulfan conditioning, and lentiviral-transduced CD34+ cell infusion produced the expected grade 3 or 4 adverse events. All the procedures met prespecified criteria for feasibility at 42 days after infusion. Gene-marked T cells were detected at 6 to 16 weeks after infusion in all the patients. Five of 6 patients who were followed for at least 24 months had T-cell immune reconstitution at a median of 12 months. The diversity of T-cell receptor ß chains normalized by 6 to 12 months. Four patients who were followed for at least 24 months had sufficient B-cell numbers, IgM concentration, or IgM isohemagglutinin titers to permit discontinuation of IgG infusions. Three of these 4 patients had normal immunization responses, and the fourth has started immunizations. Vector insertion sites showed no evidence of clonal expansion. One patient who presented with cytomegalovirus infection received a second infusion of gene-corrected cells to achieve T-cell immunity sufficient for viral clearance. Autoimmune hemolytic anemia developed in 4 patients 4 to 11 months after infusion; this condition resolved after reconstitution of T-cell immunity. All 10 patients were healthy at the time of this report. CONCLUSIONS: Infusion of lentiviral gene-corrected autologous CD34+ cells, preceded by pharmacologically targeted low-exposure busulfan, in infants with newly diagnosed ART-SCID resulted in genetically corrected and functional T and B cells. (Funded by the California Institute for Regenerative Medicine and the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT03538899.).


Subject(s)
Genetic Therapy , Severe Combined Immunodeficiency , Humans , Infant , Busulfan/therapeutic use , Genetic Therapy/adverse effects , Genetic Therapy/methods , Immunoglobulin M , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/immunology , Severe Combined Immunodeficiency/therapy , DNA Repair Enzymes/deficiency , DNA Repair Enzymes/genetics , Antigens, CD34/administration & dosage , Antigens, CD34/immunology , Transplantation, Autologous/adverse effects , Transplantation, Autologous/methods , Lentivirus , Genetic Vectors/administration & dosage , Genetic Vectors/adverse effects , Genetic Vectors/therapeutic use , T-Lymphocytes/immunology , B-Lymphocytes/immunology
13.
EMBO Rep ; 23(11): e54446, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36194627

ABSTRACT

Sterile inflammation is a central element in liver diseases. The immune response following injurious stimuli involves hepatic infiltration of neutrophils and monocytes. Neutrophils are major effectors of liver inflammation, rapidly recruited to sites of inflammation, and can augment the recruitment of other leukocytes. The NLRP3 inflammasome has been increasingly implicated in severe liver inflammation, fibrosis, and cell death. In this study, the role of NLRP3 activation in neutrophils during liver inflammation and fibrosis was investigated. Mouse models with neutrophil-specific expression of mutant NLRP3 were developed. Mutant mice develop severe liver inflammation and lethal autoinflammation phenocopying mice with a systemic expression of mutant NLRP3. NLRP3 activation in neutrophils leads to a pro-inflammatory cytokine and chemokine profile in the liver, infiltration by neutrophils and macrophages, and an increase in cell death. Furthermore, mutant mice develop liver fibrosis associated with increased expression of pro-fibrogenic genes. Taken together, the present work demonstrates how neutrophils, driven by the NLRP3 inflammasome, coordinate other inflammatory myeloid cells in the liver, and propagate the inflammatory response in the context of inflammation-driven fibrosis.


Subject(s)
Hepatitis , Inflammasomes , Mice , Animals , Inflammasomes/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Neutrophils/metabolism , Hepatitis/genetics , Fibrosis , Inflammation/metabolism , Interleukin-1beta/metabolism
14.
Cell Mol Gastroenterol Hepatol ; 14(4): 751-767, 2022.
Article in English | MEDLINE | ID: mdl-35787975

ABSTRACT

BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide. The NLRP3 inflammasome, a platform for caspase-1 activation and release of interleukin 1ß, is increasingly recognized in the induction of inflammation and liver fibrosis during NAFLD. However, the cell-specific contribution of NLRP3 inflammasome activation in NAFLD remains unknown. METHODS: To investigate the role of NLRP3 inflammasome activation in hepatocytes, hepatic stellate cells (HSCs) and myeloid cells, a conditional Nlrp3 knock-out mouse was generated and bred to cell-specific Cre mice. Both acute and chronic liver injury models were used: lipopolysaccharide/adenosine-triphosphate to induce in vivo NLRP3 activation, choline-deficient, L-amino acid-defined high-fat diet, and Western-type diet to induce fibrotic nonalcoholic steatohepatitis (NASH). In vitro co-culture studies were performed to dissect the crosstalk between myeloid cells and HSCs. RESULTS: Myeloid-specific deletion of Nlrp3 blunted the systemic and hepatic increase in interleukin 1ß induced by lipopolysaccharide/adenosine-triphosphate injection. In the choline-deficient, L-amino acid-defined high-fat diet model of fibrotic NASH, myeloid-specific Nlrp3 knock-out but not hepatocyte- or HSC-specific knock-out mice showed significant reduction in inflammation independent of steatosis development. Moreover, myeloid-specific Nlrp3 knock-out mice showed ameliorated liver fibrosis and decreased HSC activation. These results were validated in the Western-type diet model. In vitro co-cultured studies with human cell lines demonstrated that HSC can be activated by inflammasome stimulation in monocytes, and this effect was significantly reduced if NLRP3 was downregulated in monocytes. CONCLUSIONS: The study provides new insights in the cell-specific role of NLRP3 in liver inflammation and fibrosis. NLRP3 inflammasome activation in myeloid cells was identified as crucial for the progression of NAFLD to fibrotic NASH. These results may have implications for the development of cell-specific strategies for modulation of NLRP3 activation for treatment of fibrotic NASH.


Subject(s)
Inflammasomes , Liver Cirrhosis , Myeloid Cells , NLR Family, Pyrin Domain-Containing 3 Protein , Non-alcoholic Fatty Liver Disease , Adenosine , Amino Acids , Animals , Caspases , Choline , Hepatitis/genetics , Hepatitis/immunology , Humans , Inflammasomes/genetics , Inflammasomes/immunology , Inflammation , Interleukin-1beta/immunology , Lipopolysaccharides , Liver Cirrhosis/genetics , Liver Cirrhosis/immunology , Mice , Mice, Knockout , Myeloid Cells/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/immunology , Polyphosphates
15.
Nat Rev Rheumatol ; 18(8): 448-463, 2022 08.
Article in English | MEDLINE | ID: mdl-35729334

ABSTRACT

Over 20 years ago, it was first proposed that autoinflammation underpins a handful of rare monogenic disorders characterized by recurrent fever and systemic inflammation. The subsequent identification of novel, causative genes directly led to a better understanding of how the innate immune system is regulated under normal conditions, as well as its dysregulation associated with pathogenic mutations. Early on, IL-1 emerged as a central mediator for these diseases, based on data derived from patient cells, mutant mouse models and definitive clinical responses to IL-1 targeted therapy. Since that time, our understanding of the mechanisms of autoinflammation has expanded beyond IL-1 to additional innate immune processes. However, the number and complexity of IL-1-mediated autoinflammatory diseases has also multiplied to include additional monogenic syndromes with expanded genotypes and phenotypes, as well as more common polygenic disorders seen frequently by the practising clinician. In order to increase physician awareness and update rheumatologists who are likely to encounter these patients, this review discusses the general pathophysiological concepts of IL-1-mediated autoinflammation, the epidemiological and clinical features of specific diseases, diagnostic challenges and approaches, and current and future perspectives for therapy.


Subject(s)
Hereditary Autoinflammatory Diseases , Animals , Biology , Hereditary Autoinflammatory Diseases/drug therapy , Hereditary Autoinflammatory Diseases/genetics , Humans , Inflammation , Interleukin-1/genetics , Mice
16.
Arthritis Rheumatol ; 74(7): 1102-1121, 2022 07.
Article in English | MEDLINE | ID: mdl-35621220

ABSTRACT

BACKGROUND: The interleukin-1 (IL-1) mediated systemic autoinflammatory diseases, including the cryopyrin- associated periodic syndromes (CAPS), tumour necrosis factor receptor-associated periodic syndrome (TRAPS), mevalonate kinase deficiency (MKD) and deficiency of the IL-1 receptor antagonist (DIRA), belong to a group of rare immunodysregulatory diseases that primarily present in early childhood with variable multiorgan involvement. When untreated, patients with severe clinical phenotypes have a poor prognosis, and diagnosis and management of these patients can be challenging. However, approved treatments targeting the proinflammatory cytokine IL-1 have been life changing and have significantly improved patient outcomes. OBJECTIVE: To establish evidence-based recommendations for diagnosis, treatment and monitoring of patients with IL-1 mediated autoinflammatory diseases to standardise their management. METHODS: A multinational, multidisciplinary task force consisting of physician experts, including rheumatologists, patients or caregivers and allied healthcare professionals, was established. Evidence synthesis, including systematic literature review and expert consensus (Delphi) via surveys, was conducted. Consensus methodology was used to formulate and vote on statements to guide optimal patient care. RESULTS: The task force devised five overarching principles, 14 statements related to diagnosis, 10 on therapy, and nine focused on long-term monitoring that were evidence and/or consensus-based for patients with IL-1 mediated diseases. An outline was developed for disease-specific monitoring of inflammation-induced organ damage progression and reported treatments of CAPS, TRAPS, MKD and DIRA. CONCLUSION: The 2021 EULAR/American College of Rheumatology points to consider represent state-of-the-art knowledge based on published data and expert opinion to guide diagnostic evaluation, treatment and monitoring of patients with CAPS, TRAPS, MKD and DIRA, and to standardise and improve care, quality of life and disease outcomes.


Subject(s)
Cryopyrin-Associated Periodic Syndromes , Hereditary Autoinflammatory Diseases , Mevalonate Kinase Deficiency , Rheumatology , Child, Preschool , Cryopyrin-Associated Periodic Syndromes/diagnosis , Cryopyrin-Associated Periodic Syndromes/drug therapy , Fever , Hereditary Autoinflammatory Diseases/diagnosis , Hereditary Autoinflammatory Diseases/drug therapy , Hereditary Autoinflammatory Diseases/genetics , Humans , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Interleukin-1 , Mevalonate Kinase Deficiency/diagnosis , Mevalonate Kinase Deficiency/drug therapy , Quality of Life , Receptors, Interleukin-1 , United States
17.
Ann Rheum Dis ; 81(7): 907-921, 2022 07.
Article in English | MEDLINE | ID: mdl-35623638

ABSTRACT

BACKGROUND: The interleukin-1 (IL-1) mediated systemic autoinflammatory diseases, including the cryopyrin-associated periodic syndromes (CAPS), tumour necrosis factor receptor-associated periodic syndrome (TRAPS), mevalonate kinase deficiency (MKD) and deficiency of the IL-1 receptor antagonist (DIRA), belong to a group of rare immunodysregulatory diseases that primarily present in early childhood with variable multiorgan involvement. When untreated, patients with severe clinical phenotypes have a poor prognosis, and diagnosis and management of these patients can be challenging. However, approved treatments targeting the proinflammatory cytokine IL-1 have been life changing and have significantly improved patient outcomes. OBJECTIVE: To establish evidence-based recommendations for diagnosis, treatment and monitoring of patients with IL-1 mediated autoinflammatory diseases to standardise their management. METHODS: A multinational, multidisciplinary task force consisting of physician experts, including rheumatologists, patients or caregivers and allied healthcare professionals, was established. Evidence synthesis, including systematic literature review and expert consensus (Delphi) via surveys, was conducted. Consensus methodology was used to formulate and vote on statements to guide optimal patient care. RESULTS: The task force devised five overarching principles, 14 statements related to diagnosis, 10 on therapy, and nine focused on long-term monitoring that were evidence and/or consensus-based for patients with IL-1 mediated diseases. An outline was developed for disease-specific monitoring of inflammation-induced organ damage progression and reported treatments of CAPS, TRAPS, MKD and DIRA. CONCLUSION: The 2021 EULAR/American College of Rheumatology points to consider represent state-of-the-art knowledge based on published data and expert opinion to guide diagnostic evaluation, treatment and monitoring of patients with CAPS, TRAPS, MKD and DIRA, and to standardise and improve care, quality of life and disease outcomes.


Subject(s)
Cryopyrin-Associated Periodic Syndromes , Hereditary Autoinflammatory Diseases , Mevalonate Kinase Deficiency , Rheumatology , Cryopyrin-Associated Periodic Syndromes/diagnosis , Cryopyrin-Associated Periodic Syndromes/drug therapy , Fever , Hereditary Autoinflammatory Diseases/diagnosis , Hereditary Autoinflammatory Diseases/drug therapy , Hereditary Autoinflammatory Diseases/genetics , Humans , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Interleukin-1 , Mevalonate Kinase Deficiency/diagnosis , Mevalonate Kinase Deficiency/drug therapy , Quality of Life , Receptors, Interleukin-1/therapeutic use
18.
J Allergy Clin Immunol ; 149(6): 2171-2176.e3, 2022 06.
Article in English | MEDLINE | ID: mdl-35063500

ABSTRACT

BACKGROUND: Hoffman syndrome is a syndromic, inborn error of immunity due to autosomal-dominant mutations in TOP2B, an essential gene required to alleviate topological stress during DNA replication and gene transcription. Although mutations identified in patients lead to a block in B-cell development and the absence of circulating B cells, an effect on natural killer (NK) cells was not previously examined. OBJECTIVE: We sought to determine whether disease-associated mutations in TOP2B impact NK-cell development and function. METHODS: Using a knockin murine model and patient-derived induced pluripotent stem cells (iPSCs), we investigated NK-cell development in mouse bone marrow and spleen, and performed immunophenotyping by flow cytometry, gene expression, and functional assessment of cytotoxic activity in murine NK cells, and human IPSC-derived NK cells. RESULTS: Mature NK cells were reduced in the periphery of TOP2B knockin mice consistent with patient reports, with reduced cytotoxicity toward target cell lines. IPSCs were successfully derived from patients with Hoffman syndrome, but under optimal conditions showed reduced cytotoxicity compared with iPSC-derived NK cells from healthy controls. CONCLUSIONS: Hoffman syndrome-associated mutations in TOP2B impact NK-cell development and function in murine and human models.


Subject(s)
Induced Pluripotent Stem Cells , Killer Cells, Natural , Animals , Cell Line , Craniofacial Abnormalities , Humans , Induced Pluripotent Stem Cells/metabolism , Limb Deformities, Congenital , Mice , Mutation , Primary Immunodeficiency Diseases , Urogenital Abnormalities
19.
J Exp Med ; 218(10)2021 10 04.
Article in English | MEDLINE | ID: mdl-34477811

ABSTRACT

Gain-of-function mutations in NLRP3 are responsible for a spectrum of autoinflammatory diseases collectively referred to as "cryopyrin-associated periodic syndromes" (CAPS). Treatment of CAPS patients with IL-1-targeted therapies is effective, confirming a central pathogenic role for IL-1ß. However, the specific myeloid cell population(s) exhibiting inflammasome activity and sustained IL-1ß production in CAPS remains elusive. Previous reports suggested an important role for mast cells (MCs) in this process. Here, we report that, in mice, gain-of-function mutations in Nlrp3 restricted to neutrophils, and to a lesser extent macrophages/dendritic cells, but not MCs, are sufficient to trigger severe CAPS. Furthermore, in patients with clinically established CAPS, we show that skin-infiltrating neutrophils represent a substantial biological source of IL-1ß. Together, our data indicate that neutrophils, rather than MCs, can represent the main cellular drivers of CAPS pathology.


Subject(s)
Cryopyrin-Associated Periodic Syndromes/genetics , Cryopyrin-Associated Periodic Syndromes/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Neutrophils , Adolescent , Adult , Aged, 80 and over , Animals , Female , Gain of Function Mutation , Humans , Interleukin-1beta/metabolism , Male , Mast Cells/pathology , Mice, Transgenic , Middle Aged , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neutrophils/pathology , Neutrophils/physiology
20.
J Clin Invest ; 131(20)2021 10 15.
Article in English | MEDLINE | ID: mdl-34464357

ABSTRACT

BACKGROUNDMultisystem inflammatory syndrome in children (MIS-C) is a rare but potentially severe illness that follows exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Kawasaki disease (KD) shares several clinical features with MIS-C, which prompted the use of intravenous immunoglobulin (IVIG), a mainstay therapy for KD. Both diseases share a robust activation of the innate immune system, including the IL-1 signaling pathway, and IL-1 blockade has been used for the treatment of both MIS-C and KD. The mechanism of action of IVIG in these 2 diseases and the cellular source of IL-1ß have not been defined.METHODSThe effects of IVIG on peripheral blood leukocyte populations from patients with MIS-C and KD were examined using flow cytometry and mass cytometry (CyTOF) and live-cell imaging.RESULTSCirculating neutrophils were highly activated in patients with KD and MIS-C and were a major source of IL-1ß. Following IVIG treatment, activated IL-1ß+ neutrophils were reduced in the circulation. In vitro, IVIG was a potent activator of neutrophil cell death via PI3K and NADPH oxidase, but independently of caspase activation.CONCLUSIONSActivated neutrophils expressing IL-1ß can be targeted by IVIG, supporting its use in both KD and MIS-C to ameliorate inflammation.FUNDINGPatient Centered Outcomes Research Institute; NIH; American Asthma Foundation; American Heart Association; Novo Nordisk Foundation; NIGMS; American Academy of Allergy, Asthma and Immunology Foundation.


Subject(s)
COVID-19/complications , Immunoglobulins, Intravenous/therapeutic use , Mucocutaneous Lymph Node Syndrome/immunology , Mucocutaneous Lymph Node Syndrome/therapy , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/therapy , COVID-19/blood , COVID-19/immunology , COVID-19/therapy , Case-Control Studies , Cell Death/immunology , Cell Lineage/immunology , Child , Child, Preschool , Fas Ligand Protein/immunology , Female , Humans , Infant , Interleukin-1beta/antagonists & inhibitors , Interleukin-1beta/blood , Leukocyte Count , Male , Mucocutaneous Lymph Node Syndrome/blood , Neutrophil Activation , Neutrophils/classification , Neutrophils/immunology , Neutrophils/pathology , Systemic Inflammatory Response Syndrome/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...