Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Microbiol Spectr ; 12(4): e0333523, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38426746

ABSTRACT

Seagrasses can enhance nutrient mobilization in their rhizosphere via complex interactions with sediment redox conditions and microbial populations. Yet, limited knowledge exists on how seagrass-derived rhizosphere dynamics affect nitrogen cycling. Using optode and gel-sampler-based chemical imaging, we show that radial O2 loss (ROL) from rhizomes and roots leads to the formation of redox gradients around below-ground tissues of seagrass (Zostera marina), which are co-localized with regions of high ammonium concentrations in the rhizosphere. Combining such chemical imaging with fine-scale sampling for microbial community and gene expression analyses indicated that multiple biogeochemical pathways and microbial players can lead to high ammonium concentration within the oxidized regions of the seagrass rhizosphere. Symbiotic N2-fixing bacteria (Bradyrhizobium) were particularly abundant and expressed the diazotroph functional marker gene nifH in Z. marina rhizosphere areas with high ammonium concentrations. Such an association between Z. marina and Bradyrhizobium can facilitate ammonium mobilization, the preferred nitrogen source for seagrasses, enhancing seagrass productivity within nitrogen-limited environments. ROL also caused strong gradients of sulfide at anoxic/oxic interfaces in rhizosphere areas, where we found enhanced nifH transcription by sulfate-reducing bacteria. Furthermore, we found a high abundance of methylotrophic and sulfide-oxidizing bacteria in rhizosphere areas, where O2 was released from seagrass rhizomes and roots. These bacteria could play a beneficial role for the plants in terms of their methane and sulfide oxidation, as well as their formation of growth factors and phytohormones. ROL from below-ground tissues of seagrass, thus, seems crucial for ammonium production in the rhizosphere via stimulation of multiple diazotrophic associations. IMPORTANCE: Seagrasses are important marine habitats providing several ecosystem services in coastal waters worldwide, such as enhancing marine biodiversity and mitigating climate change through efficient carbon sequestration. Notably, the fitness of seagrasses is affected by plant-microbe interactions. However, these microscale interactions are challenging to study and large knowledge gaps prevail. Our study shows that redox microgradients in the rhizosphere of seagrass select for a unique microbial community that can enhance the ammonium availability for seagrass. We provide first experimental evidence that Rhizobia, including the symbiotic N2-fixing bacteria Bradyrhizobium, can contribute to the bacterial ammonium production in the seagrass rhizosphere. The release of O2 from rhizomes and roots also caused gradients of sulfide in rhizosphere areas with enhanced nifH transcription by sulfate-reducing bacteria. O2 release from seagrass root systems thus seems crucial for ammonium production in the rhizosphere via stimulation of multiple diazotrophic associations.


Subject(s)
Ecosystem , Rhizosphere , Bacteria/genetics , Bacteria/metabolism , Oxidation-Reduction , Sulfides/metabolism , Nitrogen/metabolism , Sulfates/metabolism
2.
New Phytol ; 239(4): 1300-1314, 2023 08.
Article in English | MEDLINE | ID: mdl-37222134

ABSTRACT

In many terrestrial seeds, photosynthetic activity supplies O2 to the developing plant embryo to sustain aerobic metabolism and enhance biosynthetic activity. However, whether seagrass seeds possess similar photosynthetic capacity to alleviate intra-seed hypoxic stress conditions is unknown. We used a novel combination of microscale variable chlorophyll fluorescence imaging, a custom-made O2 optode microrespirometry system and planar optode O2 imaging, to determine the O2 microenvironment and photosynthetic activity in developing seeds and seedlings of seagrass (Zostera marina). Developing, sheath-covered seeds exhibited high O2 concentrations in the photosynthetic active seed sheath and low O2 concentrations in the centre of the seed at the position of the embryo. In light, photosynthesis in the seed sheath increased O2 availability in central parts of the seed enabling enhanced respiratory energy generation for biosynthetic activity. Early-stage seedlings also displayed photosynthetic capacity in hypocotyl and cotyledonary tissues, which may be beneficial for seedling establishment. Sheath O2 production is important for alleviating intra-seed hypoxic stress, which might increase endosperm storage activity, improving the conditions for successful seed maturation and germination.


Subject(s)
Seedlings , Zosteraceae , Seedlings/metabolism , Photosynthesis , Germination , Seeds/metabolism
3.
Environ Pollut ; 294: 118637, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34875268

ABSTRACT

Freshwater wetlands are natural sinks of carbon; yet, wetland conversion for agricultural uses can shift these carbon sinks into large sources of greenhouse gases. We know that the anthropogenic alteration of wetland hydrology and the broad use of N-fertilizers can modify biogeochemical cycling, however, the extent of their combined effect on greenhouse gases exchange still needs further research. Moreover, there has been recent interest in wetlands rehabilitation and preservation by improving natural water flow and by seeking alternative solutions to nutrient inputs. In a microcosm setting, we experimentally exposed soils to three inundation treatments (Inundated, Moist, Drained) and a nutrient treatment by adding high nitrogen load (300 kg ha-1) to simulate physical and chemical disturbances. After, we measured the depth microprofiles of N2O and O2 concentration and CO2 and CH4 emission rates to determine how hydrological alteration and nitrogen input affect carbon and nitrogen cycling processes in inland wetland soils. Compared to the Control soils, N-fertilizer increased CO2 emissions by 40% in Drained conditions and increased CH4 emissions in Inundated soils over 90%. N2O emissions from Moist and Inundated soils enriched with nitrogen increased by 17.4 and 18-fold, respectively. Overall, the combination of physical and chemical disturbances increased the Global Warming Potential (GWP) by 7.5-fold. The first response of hydrological rehabilitation, while typically valuable for CO2 emission reduction, amplified CH4 and N2O emissions when combined with high nitrogen inputs. Therefore, this research highlights the importance of evaluating the potential interactive effects of various disturbances on biogeochemical processes when devising rehabilitation plans to rehabilitate degraded wetlands.


Subject(s)
Carbon Dioxide , Wetlands , Carbon Dioxide/analysis , Fertilization , Hydrology , Methane , Nitrous Oxide/analysis , Soil
4.
J R Soc Interface ; 17(171): 20200485, 2020 10.
Article in English | MEDLINE | ID: mdl-33050780

ABSTRACT

Intensified coastal eutrophication can result in an overgrowth of seagrass leaves by epiphytes, which is a major threat to seagrass habitats worldwide, but little is known about how epiphytic biofilms affect the seagrass phyllosphere. The physico-chemical microenvironment of Zostera marina L. leaves with and without epiphytes was mapped with electrochemical, thermocouple and scalar irradiance microsensors as a function of four irradiance conditions (dark, low, saturating and high light) and two water flow velocities (approx. 0.5 and 5 cm s-1), which resemble field conditions. The presence of epiphytes led to the build up of a diffusive boundary layer and a thermal boundary layer which impeded O2 and heat transfer between the leaf surface and the surrounding water, resulting in a maximum increase of 0.8°C relative to leaves with no epiphytes. Epiphytes also reduced the quantity and quality of light reaching the leaf, decreasing plant photosynthesis. In darkness, epiphyte respiration exacerbated hypoxic conditions, which can lead to anoxia and the production of potential phytotoxic nitric oxide in the seagrass phyllosphere. Epiphytic biofilm affects the local phyllosphere physico-chemistry both because of its metabolic activity (i.e. photosynthesis/respiration) and its physical properties (i.e. thickness, roughness, density and back-scattering properties). Leaf tissue warming can lead to thermal stress in seagrasses living close to their thermal stress threshold, and thus potentially aggravate negative effects of global warming.


Subject(s)
Zosteraceae , Ecosystem , Eutrophication , Photosynthesis , Plant Leaves
5.
Plant Cell Environ ; 43(1): 174-187, 2020 01.
Article in English | MEDLINE | ID: mdl-31429088

ABSTRACT

Coastal eutrophication is a growing problem worldwide, leading to increased epiphyte overgrowth of seagrass leaves. Yet little is known about how epiphytes affect key biogeochemical conditions and processes in the seagrass phyllosphere. We used electrochemical microsensors to measure microgradients of O2 , pH, and CO2 at the bare and epiphyte-covered leaf surface of seagrass (Zostera marina L.) to determine effects of epiphytes on the leaf chemical microenvironment. Epiphytes result in extreme daily fluctuations in pH, O2 , and inorganic carbon concentrations at the seagrass leaf surface severely hampering the plant's performance. In light, leaf epiphyte biofilms and their diffusive boundary layer lead to strong basification, markedly reducing the CO2 and HCO3- availability at the leaf surface, leading to reduced photosynthetic efficiency as a result of carbon limitation and enhanced photorespiration. With epiphytes, leaf surface pH increased to >10, thereby exceeding final pH levels (~9.62) and CO2 compensation points for active photosynthesis. In darkness, epiphyte biofilms resulted in increased CO2 and hypoxia at the leaf surface. Epiphytes can lead to severe carbon limitation in seagrasses owing to strong phyllosphere basification leading to CO2 depletion and costly, yet limiting, HCO3- utilization, increasing the risk of plant starvation.


Subject(s)
Carbon Dioxide/metabolism , Plant Leaves/metabolism , Zosteraceae/physiology , Bicarbonates/metabolism , Biofilms , Carbon Dioxide/chemistry , Denmark , Environmental Monitoring , Hydrogen-Ion Concentration , Oxygen , Photosynthesis
6.
Mikrochim Acta ; 186(2): 126, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30680465

ABSTRACT

Most aquatic systems rely on a multitude of biogeochemical processes that are coupled with each other in a complex and dynamic manner. To understand such processes, minimally invasive analytical tools are required that allow continuous, real-time measurements of individual reactions in these complex systems. Optical chemical sensors can be used in the form of fiber-optic sensors, planar sensors, or as micro- and nanoparticles (MPs and NPs). All have their specific merits, but only the latter allow for visualization and quantification of chemical gradients over 3D structures. This review (with 147 references) summarizes recent developments mainly in the field of optical NP sensors relevant for chemical imaging in aquatic science. The review encompasses methods for signal read-out and imaging, preparation of NPs and MPs, and an overview of relevant MP/NP-based sensors. Additionally, examples of MP/NP-based sensors in aquatic systems such as corals, plant tissue, biofilms, sediments and water-sediment interfaces, marine snow and in 3D bioprinting are given. We also address current challenges and future perspectives of NP-based sensing in aquatic systems in a concluding section. Graphical abstract ᅟ.

7.
Environ Microbiol ; 20(8): 2854-2864, 2018 08.
Article in English | MEDLINE | ID: mdl-29687545

ABSTRACT

The seagrass rhizosphere harbors dynamic microenvironments, where plant-driven gradients of O2 and dissolved organic carbon form microhabitats that select for distinct microbial communities. To examine how seagrass-mediated alterations of rhizosphere geochemistry affect microbial communities at the microscale level, we applied 16S rRNA amplicon sequencing of artificial sediments surrounding the meristematic tissues of the seagrass Zostera muelleri together with microsensor measurements of the chemical conditions at the basal leaf meristem (BLM). Radial O2 loss (ROL) from the BLM led to ∼ 300 µm thick oxic microzones, wherein pronounced decreases in H2 S and pH occurred. Significantly higher relative abundances of sulphate-reducing bacteria were observed around the meristematic tissues compared to the bulk sediment, especially around the root apical meristems (RAM; ∼ 57% of sequences). Within oxic microniches, elevated abundances of sulphide-oxidizing bacteria were observed compared to the bulk sediment and around the RAM. However, sulphide oxidisers within the oxic microzone did not enhance sediment detoxification, as rates of H2 S re-oxidation here were similar to those observed in a pre-sterilized root/rhizome environment. Our results provide novel insights into how chemical and microbiological processes in the seagrass rhizosphere modulate plant-microbe interactions potentially affecting seagrass health.


Subject(s)
Bacteria/classification , Geologic Sediments/microbiology , Rhizosphere , Zosteraceae/microbiology , Bacteria/genetics , Meristem/metabolism , Microbiota , Oxygen/metabolism , RNA, Ribosomal, 16S/genetics , Soil Microbiology , Zosteraceae/metabolism
8.
Mar Environ Res ; 136: 38-47, 2018 May.
Article in English | MEDLINE | ID: mdl-29472034

ABSTRACT

Seagrass meadows increasingly face reduced light availability as a consequence of coastal development, eutrophication, and climate-driven increases in rainfall leading to turbidity plumes. We examined the impact of reduced light on above-ground seagrass biomass and sediment biogeochemistry in tropical shallow- (∼2 m) and deep-water (∼17 m) seagrass meadows (Green Island, Australia). Artificial shading (transmitting ∼10-25% of incident solar irradiance) was applied to the shallow- and deep-water sites for up to two weeks. While above-ground biomass was unchanged, higher diffusive O2 uptake (DOU) rates, lower O2 penetration depths, and higher volume-specific O2 consumption (R) rates were found in seagrass-vegetated sediments as compared to adjacent bare sand (control) areas at the shallow-water sites. In contrast, deep-water sediment characteristics did not differ between bare sand and vegetated sites. At the vegetated shallow-water site, shading resulted in significantly lower hydrogen sulphide (H2S) levels in the sediment. No shading effects were found on sediment biogeochemistry at the deep-water site. Overall, our results show that the sediment biogeochemistry of shallow-water (Halodule uninervis, Syringodium isoetifolium, Cymodocea rotundata and C. serrulata) and deep-water (Halophila decipiens) seagrass meadows with different species differ in response to reduced light. The light-driven dynamics of the sediment biogeochemistry at the shallow-water site could suggest the presence of a microbial consortium, which might be stimulated by photosynthetically produced exudates from the seagrass, which becomes limited due to lower seagrass photosynthesis under shaded conditions.


Subject(s)
Alismatales/physiology , Ecosystem , Sunlight , Australia , Biomass , Geologic Sediments/analysis , Geologic Sediments/chemistry , Islands , Water
9.
Photosynth Res ; 136(2): 147-160, 2018 May.
Article in English | MEDLINE | ID: mdl-28980125

ABSTRACT

Seagrasses are a diverse group of angiosperms that evolved to live in shallow coastal waters, an environment regularly subjected to changes in oxygen, carbon dioxide and irradiance. Zostera muelleri is the dominant species in south-eastern Australia, and is critical for healthy coastal ecosystems. Despite its ecological importance, little is known about the pathways of carbon fixation in Z. muelleri and their regulation in response to environmental changes. In this study, the response of Z. muelleri exposed to control and very low oxygen conditions was investigated by using (i) oxygen microsensors combined with a custom-made flow chamber to measure changes in photosynthesis and respiration, and (ii) reverse transcription quantitative real-time PCR to measure changes in expression levels of key genes involved in C4 metabolism. We found that very low levels of oxygen (i) altered the photophysiology of Z. muelleri, a characteristic of C3 mechanism of carbon assimilation, and (ii) decreased the expression levels of phosphoenolpyruvate carboxylase and carbonic anhydrase. These molecular-physiological results suggest that regulation of the photophysiology of Z. muelleri might involve a close integration between the C3 and C4, or other CO2 concentrating mechanisms metabolic pathways. Overall, this study highlights that the photophysiological response of Z. muelleri to changing oxygen in water is capable of rapid acclimation and the dynamic modulation of pathways should be considered when assessing seagrass primary production.


Subject(s)
Carbon/metabolism , Plant Proteins/genetics , Zosteraceae/physiology , Carbonic Anhydrases/genetics , Carbonic Anhydrases/metabolism , Gene Expression Regulation, Plant , Oxygen/metabolism , Phosphoenolpyruvate Carboxylase/genetics , Phosphoenolpyruvate Carboxylase/metabolism , Photosynthesis/physiology , Plant Proteins/metabolism , Real-Time Polymerase Chain Reaction
10.
Environ Sci Technol ; 51(24): 14155-14163, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29149570

ABSTRACT

Tropical seagrasses are nutrient-limited owing to the strong phosphorus fixation capacity of carbonate-rich sediments, yet they form densely vegetated, multispecies meadows in oligotrophic tropical waters. Using a novel combination of high-resolution, two-dimensional chemical imaging of O2, pH, iron, sulfide, calcium, and phosphorus, we found that tropical seagrasses are able to mobilize the essential nutrients iron and phosphorus in their rhizosphere via multiple biogeochemical pathways. We show that tropical seagrasses mobilize phosphorus and iron within their rhizosphere via plant-induced local acidification, leading to dissolution of carbonates and release of phosphate, and via local stimulation of microbial sulfide production, causing reduction of insoluble Fe(III) oxyhydroxides to dissolved Fe(II) with concomitant phosphate release into the rhizosphere porewater. These nutrient mobilization mechanisms have a direct link to seagrass-derived radial O2 loss and secretion of dissolved organic carbon from the below-ground tissue into the rhizosphere. Our demonstration of seagrass-derived rhizospheric phosphorus and iron mobilization explains why seagrasses are widely distributed in oligotrophic tropical waters.


Subject(s)
Iron , Phosphorus , Geologic Sediments , Rhizosphere , Sulfides
11.
New Phytol ; 205(3): 1264-1276, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25367685

ABSTRACT

Seagrass is constantly challenged with transporting sufficient O2 from above- to belowground tissue via aerenchyma in order to maintain aerobic metabolism and provide protection against phytotoxins. Electrochemical microsensors were used in combination with a custom-made experimental chamber to analyse the belowground biogeochemical microenvironment of Zostera muelleri under changing environmental conditions. Measurements revealed high radial O2 release of up to 500 nmol O2 cm(-2) h(-1) from the base of the leaf sheath, maintaining a c. 300-µm-wide plant-mediated oxic microzone and thus protecting the vital meristematic regions of the rhizome from reduced phytotoxic metabolites such as hydrogen sulphide (H2S). H2S intrusion was prevented through passive diffusion of O2 to belowground tissue from leaf photosynthesis in light, as well as from the surrounding water column into the flow-exposed plant parts during darkness. Under water column hypoxia, high belowground H2S concentrations at the tissue surface correlated with the inability to sustain the protecting oxic microshield around the meristematic regions of the rhizome. We also found increased pH levels in the immediate rhizosphere of Z. muelleri, which may contribute to further detoxification of H2S through shifts in the chemical speciation of sulphide. Zostera muelleri can modify the geochemical conditions in its immediate rhizosphere, thereby reducing its exposure to H2S.


Subject(s)
Geologic Sediments/chemistry , Hydrogen Sulfide/toxicity , Oxygen/metabolism , Zosteraceae/metabolism , Hydrogen-Ion Concentration , Models, Biological , Photosystem II Protein Complex/metabolism , Plant Shoots/drug effects , Plant Shoots/metabolism , Quantum Theory , Rhizome/drug effects , Rhizome/metabolism , Rhizosphere , Spectrometry, Fluorescence
12.
J R Soc Interface ; 11(93): 20130997, 2014 Apr 06.
Article in English | MEDLINE | ID: mdl-24478282

ABSTRACT

The light field on coral reefs varies in intensity and spectral composition, and is the key regulating factor for phototrophic reef organisms, for example scleractinian corals harbouring microalgal symbionts. However, the actual efficiency of light utilization in corals and the mechanisms affecting the radiative energy budget of corals are underexplored. We present the first balanced light energy budget for a symbiont-bearing coral based on a fine-scale study of the microenvironmental photobiology of the massive coral Montastrea curta. The majority (more than 96%) of the absorbed light energy was dissipated as heat, whereas the proportion of the absorbed light energy used in photosynthesis was approximately 4.0% under an irradiance of 640 µmol photons m(-2) s(-1). With increasing irradiance, the proportion of heat dissipation increased at the expense of photosynthesis. Despite such low energy efficiency, we found a high photosynthetic efficiency of the microalgal symbionts showing high gross photosynthesis rates and quantum efficiencies (QEs) of approximately 0.1 O2 photon(-1) approaching theoretical limits under moderate irradiance levels. Corals thus appear as highly efficient light collectors with optical properties enabling light distribution over the corallite/tissue microstructural canopy that enables a high photosynthetic QE of their photosynthetic microalgae in hospite.


Subject(s)
Anthozoa/physiology , Microalgae/physiology , Oxygen/metabolism , Photosynthesis/physiology , Symbiosis/physiology , Animals , Anthozoa/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...