Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38704098

ABSTRACT

BACKGROUND: Aspirin-exacerbated respiratory disease (AERD) is a severe disease involving dysregulated type 2 inflammation. However, the role other inflammatory pathways play in AERD is poorly understood. OBJECTIVE: We sought to broadly define the inflammatory milieu of the upper respiratory tract in AERD and to determine the effects of IL-4Rα inhibition on mediators of nasal inflammation. METHODS: Twenty-two AERD patients treated with dupilumab for 3 months were followed over 3 visits and compared to 10 healthy controls. Nasal fluid was assessed for 45 cytokines and chemokines using Olink Target 48. Blood neutrophils and cultured human mast cells, monocytes/macrophages, and nasal fibroblasts were assessed for response to IL-4/13 stimulation in vitro. RESULTS: Of the nasal fluid cytokines measured, nearly one-third were higher in AERD patients compared to healthy controls, including IL-6 and the IL-6 family-related cytokine oncostatin M (OSM), both of which correlated with nasal albumin levels, a marker of epithelial barrier dysregulation. Dupilumab significantly decreased many nasal mediators, including OSM and IL-6. IL-4 stimulation induced OSM production from mast cells and macrophages, but not from neutrophils, and OSM and IL-13 stimulation induced IL-6 production from nasal fibroblasts. CONCLUSION: In addition to type 2 inflammation, innate and IL-6-related cytokines are also elevated in the respiratory tract in AERD. Both OSM and IL-6 are locally produced in nasal polyps and likely promote pathology by negatively affecting epithelial barrier function. IL-4Rα blockade, though seemingly directed at type 2 inflammation, also decreases mediators of innate inflammation and epithelial dysregulation, which may contribute to dupilumab's therapeutic efficacy in AERD.

2.
Arthritis Rheumatol ; 76(2): 285-292, 2024 02.
Article in English | MEDLINE | ID: mdl-37610270

ABSTRACT

OBJECTIVE: Kawasaki disease (KD) is a systemic vasculitis of young children that can lead to development of coronary artery aneurysms. We aimed to identify diagnostic markers to distinguish KD from other pediatric inflammatory diseases. METHODS: We used the proximity extension assay to profile proinflammatory mediators in plasma samples from healthy pediatric controls (n = 30), febrile controls (n = 26), and patients with KD (n = 23), multisystem inflammatory syndrome in children (MIS-C; n = 25), macrophage activation syndrome (n = 13), systemic and nonsystemic juvenile idiopathic arthritis (n = 14 and n = 10, respectively), and juvenile dermatomyositis (n = 9). We validated the key findings using serum samples from additional patients with KD (n = 37) and febrile controls (n = 28). RESULTS: High-fidelity proteomic profiling revealed distinct patterns of cytokine and chemokine expression across pediatric inflammatory diseases. Although KD and MIS-C exhibited many similarities, KD differed from MIS-C and other febrile diseases in that most patients exhibited elevation in one or more members of the interleukin-17 (IL-17) cytokine family, IL-17A, IL-17C, and IL-17F. IL-17A was particularly sensitive and specific, discriminating KD from febrile controls with an area under the receiver operator characteristic curve of 0.95 (95% confidence interval 0.89-1.00) in the derivation set and 0.91 (0.85-0.98) in the validation set. Elevation of all three IL-17-family cytokines was observed in over 50% of KD patients, including 19 of 20 with coronary artery aneurysms, but was rare in all other comparator groups. CONCLUSION: Elevation of IL-17 family cytokines is a hallmark of KD and may help distinguish KD from its clinical mimics.


Subject(s)
COVID-19/complications , Coronary Aneurysm , Mucocutaneous Lymph Node Syndrome , Systemic Inflammatory Response Syndrome , Child , Humans , Child, Preschool , Interleukin-17 , Cytokines , Mucocutaneous Lymph Node Syndrome/diagnosis , Proteomics , Fever
3.
J Autoimmun ; 140: 103119, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37797401

ABSTRACT

We aimed to characterize the genetic basis of disease in a family with multiple autoimmune manifestations, including systemic lupus erythematosus (SLE), immune thrombocytopenia, and autoimmune thyroiditis. Whole exome sequencing (WES) was conducted to identify candidate variants, which were analyzed by flow cytometry, immunoblotting, immunoprecipitation, and luciferase reporter assay in transfected 293T cells. Gene expression in peripheral blood mononuclear cells (PBMC) was profiled by bulk RNA sequencing and plasma cytokines were measured by proximity extension assay. In two siblings with early-onset SLE and immune thrombocytopenia, WES identified two maternally inherited in cis variants (p. Pro50Leu and p.Ala76Gly) in Suppressor of cytokine signaling 1 (SOCS1), flanking the kinase inhibitory domain that interacts with Janus kinases (JAK). Both variants were predicted to be benign by most in silico algorithms and neither alone affected the ability of SOCS1 to inhibit JAK-STAT1 signaling by functional studies. When both variants were expressed in cis, the mutant SOCS1 protein displayed decreased binding to JAK1 and reduced capacity to inhibit type I interferon (IFN-I) signaling by ∼20-30% compared to the wildtype protein. PBMC from the probands and their mother showed increased expression of interferon-inducible genes compared to healthy controls, supporting defective regulation of IFN-I signaling. Cells from all three subjects displayed heightened sensitivity to IFN-I stimulation, while response to IFN-γ, IL-4, and IL-6 was comparable to healthy controls. Our work illustrates the critical fine-tuning of IFN-I signaling by SOCS1 to prevent autoimmunity. We show that a combination of genetic variants that are individually benign may have deleterious consequences.

4.
J Clin Invest ; 133(22)2023 11 15.
Article in English | MEDLINE | ID: mdl-37751296

ABSTRACT

BACKGROUNDMacrophage activation syndrome (MAS) is a life-threatening complication of Still's disease (SD) characterized by overt immune cell activation and cytokine storm. We aimed to further understand the immunologic landscape of SD and MAS.METHODWe profiled PBMCs from people in a healthy control group and patients with SD with or without MAS using bulk RNA-Seq and single-cell RNA-Seq (scRNA-Seq). We validated and expanded the findings by mass cytometry, flow cytometry, and in vitro studies.RESULTSBulk RNA-Seq of PBMCs from patients with SD-associated MAS revealed strong expression of genes associated with type I interferon (IFN-I) signaling and cell proliferation, in addition to the expected IFN-γ signal, compared with people in the healthy control group and patients with SD without MAS. scRNA-Seq analysis of more than 65,000 total PBMCs confirmed IFN-I and IFN-γ signatures and localized the cell proliferation signature to cycling CD38+HLA-DR+ cells within CD4+ T cell, CD8+ T cell, and NK cell populations. CD38+HLA-DR+ lymphocytes exhibited prominent IFN-γ production, glycolysis, and mTOR signaling. Cell-cell interaction modeling suggested a network linking CD38+HLA-DR+ lymphocytes with monocytes through IFN-γ signaling. Notably, the expansion of CD38+HLA-DR+ lymphocytes in MAS was greater than in other systemic inflammatory conditions in children. In vitro stimulation of PBMCs demonstrated that IFN-I and IL-15 - both elevated in MAS patients - synergistically augmented the generation of CD38+HLA-DR+ lymphocytes, while Janus kinase inhibition mitigated this response.CONCLUSIONMAS associated with SD is characterized by overproduction of IFN-I, which may act in synergy with IL-15 to generate CD38+HLA-DR+ cycling lymphocytes that produce IFN-γ.


Subject(s)
Interferon Type I , Macrophage Activation Syndrome , Child , Humans , Interleukin-15 , Macrophage Activation Syndrome/genetics , HLA-DR Antigens , CD8-Positive T-Lymphocytes , Antibodies , Interferon Type I/genetics
5.
J Allergy Clin Immunol ; 152(3): 771-782, 2023 09.
Article in English | MEDLINE | ID: mdl-37150360

ABSTRACT

BACKGROUND: Deficiency of adenosine deaminase 2 (DADA2) results in heterogeneous manifestations including systemic vasculitis and red cell aplasia. The basis of different disease phenotypes remains incompletely defined. OBJECTIVE: We sought to further delineate disease phenotypes in DADA2 and define the mechanistic basis of ADA2 variants. METHODS: We analyzed the clinical features and ADA2 variants in 33 patients with DADA2. We compared the transcriptomic profile of 14 patients by bulk RNA sequencing. ADA2 variants were expressed experimentally to determine impact on protein production, trafficking, release, and enzymatic function. RESULTS: Transcriptomic analysis of PBMCs from DADA2 patients with the vasculitis phenotype or pure red cell aplasia phenotype exhibited similar upregulation of TNF, type I interferon, and type II interferon signaling pathways compared with healthy controls. These pathways were also activated in 3 asymptomatic individuals with DADA2. Analysis of ADA2 variants, including 7 novel variants, showed different mechanisms of functional disruption including (1) unstable transcript leading to RNA degradation; (2) impairment of ADA2 secretion because of retention in the endoplasmic reticulum; (3) normal expression and secretion of ADA2 that lacks enzymatic function; and (4) disruption of the N-terminal signal peptide leading to cytoplasmic localization of unglycosylated protein. CONCLUSIONS: Transcriptomic signatures of inflammation are observed in patients with different disease phenotypes, including some asymptomatic individuals. Disease-associated ADA2 variants affect protein function by multiple mechanisms, which may contribute to the clinical heterogeneity of DADA2.


Subject(s)
Adenosine Deaminase , Vasculitis , Humans , Adenosine Deaminase/genetics , Intercellular Signaling Peptides and Proteins/genetics , Phenotype , Mutation
6.
Nat Commun ; 13(1): 6915, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36443301

ABSTRACT

Still's disease is a severe inflammatory syndrome characterized by fever, skin rash and arthritis affecting children and adults. Patients with Still's disease may also develop macrophage activation syndrome, a potentially fatal complication of immune dysregulation resulting in cytokine storm. Here we show that mTORC1 (mechanistic target of rapamycin complex 1) underpins the pathology of Still's disease and macrophage activation syndrome. Single-cell RNA sequencing in a murine model of Still's disease shows preferential activation of mTORC1 in monocytes; both mTOR inhibition and monocyte depletion attenuate disease severity. Transcriptomic data from patients with Still's disease suggest decreased expression of the mTORC1 inhibitors TSC1/TSC2 and an mTORC1 gene signature that strongly correlates with disease activity and treatment response. Unrestricted activation of mTORC1 by Tsc2 deletion in mice is sufficient to trigger a Still's disease-like syndrome, including both inflammatory arthritis and macrophage activation syndrome with hemophagocytosis, a cellular manifestation that is reproduced in human monocytes by CRISPR/Cas-mediated deletion of TSC2. Consistent with this observation, hemophagocytic histiocytes from patients with macrophage activation syndrome display prominent mTORC1 activity. Our study suggests a mechanistic link of mTORC1 to inflammation that connects the pathogenesis of Still's disease and macrophage activation syndrome.


Subject(s)
Arthritis, Juvenile , Lymphohistiocytosis, Hemophagocytic , Macrophage Activation Syndrome , Adult , Child , Humans , Mice , Animals , Macrophage Activation Syndrome/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , Lymphohistiocytosis, Hemophagocytic/genetics , Models, Theoretical
7.
J Clin Immunol ; 42(8): 1766-1777, 2022 11.
Article in English | MEDLINE | ID: mdl-35976468

ABSTRACT

Haploinsufficiency of suppressor of cytokine signaling 1 (SOCS1) is a recently discovered autoinflammatory disorder with significant rheumatologic, immunologic, and hematologic manifestations. Here we report a case of SOCS1 haploinsufficiency in a 5-year-old child with profound arthralgias and immune-mediated thrombocytopenia unmasked by SARS-CoV-2 infection. Her clinical manifestations were accompanied by excessive B cell activity, eosinophilia, and elevated IgE levels. Uniquely, this is the first report of SOCS1 haploinsufficiency in the setting of a chromosomal deletion resulting in complete loss of a single SOCS1 gene with additional clinical findings of bone marrow hypocellularity and radiologic evidence of severe enthesitis. Immunologic profiling showed a prominent interferon signature in the patient's peripheral blood mononuclear cells, which were also hypersensitive to stimulation by type I and type II interferons. The patient showed excellent clinical and functional laboratory response to tofacitinib, a Janus kinase inhibitor that disrupts interferon signaling. Our case highlights the need to utilize a multidisciplinary diagnostic approach and consider a comprehensive genetic evaluation for inborn errors of immunity in patients with an atypical immune-mediated thrombocytopenia phenotype.


Subject(s)
COVID-19 , Myelodysplastic Syndromes , Thrombocytopenia , Female , Humans , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism , Haploinsufficiency , Leukocytes, Mononuclear/metabolism , Bone Marrow , SARS-CoV-2 , Suppressor of Cytokine Signaling Proteins/genetics , Suppressor of Cytokine Signaling Proteins/metabolism , Interferons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...