Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 12(15)2023 07 25.
Article in English | MEDLINE | ID: mdl-37566001

ABSTRACT

Glioblastoma (GBM) is the most common and aggressive primary brain tumor. GBM contains a small subpopulation of glioma stem cells (GSCs) that are implicated in treatment resistance, tumor infiltration, and recurrence, and are thereby considered important therapeutic targets. Recent clinical studies have suggested that the choice of general anesthetic (GA), particularly propofol, during tumor resection, affects subsequent tumor response to treatments and patient prognosis. In this study, we investigated the molecular mechanisms underlying propofol's anti-tumor effects on GSCs and their interaction with microglia cells. Propofol exerted a dose-dependent inhibitory effect on the self-renewal, expression of mesenchymal markers, and migration of GSCs and sensitized them to both temozolomide (TMZ) and radiation. At higher concentrations, propofol induced a large degree of cell death, as demonstrated using microfluid chip technology. Propofol increased the expression of the lncRNA BDNF-AS, which acts as a tumor suppressor in GBM, and silencing of this lncRNA partially abrogated propofol's effects. Propofol also inhibited the pro-tumorigenic GSC-microglia crosstalk via extracellular vesicles (EVs) and delivery of BDNF-AS. In conclusion, propofol exerted anti-tumor effects on GSCs, sensitized these cells to radiation and TMZ, and inhibited their pro-tumorigenic interactions with microglia via transfer of BDNF-AS by EVs.


Subject(s)
Brain Neoplasms , Extracellular Vesicles , Glioblastoma , Glioma , Propofol , RNA, Long Noncoding , Humans , Brain Neoplasms/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Extracellular Vesicles/metabolism , Glioblastoma/metabolism , Glioma/metabolism , Microglia/metabolism , Neoplastic Stem Cells/pathology , Propofol/pharmacology , RNA, Long Noncoding/genetics , Temozolomide/pharmacology
2.
Front Cell Dev Biol ; 9: 691648, 2021.
Article in English | MEDLINE | ID: mdl-34604212

ABSTRACT

Background: There is a compelling evidence from animal models that early exposure to clinically relevant general anesthetics (GAs) interferes with brain development, resulting in long-lasting cognitive impairments. Human studies have been inconclusive and are challenging due to numerous confounding factors. Here, we employed primary human neural cells to analyze ketamine neurotoxic effects focusing on the role of glial cells and their activation state. We also explored the roles of astrocyte-derived extracellular vesicles (EVs) and different components of the brain-derived neurotrophic factor (BDNF) pathway. Methods: Ketamine effects on cell death were analyzed using live/dead assay, caspase 3 activity and PARP-1 cleavage. Astrocytic and microglial cell differentiation was determined using RT-PCR, ELISA and phagocytosis assay. The impact of the neuron-glial cell interactions in the neurotoxic effects of ketamine was analyzed using transwell cultures. In addition, the role of isolated and secreted EVs in this cross-talk were studied. The expression and function of different components of the BDNF pathway were analyzed using ELISA, RT-PCR and gene silencing. Results: Ketamine induced neuronal and oligodendrocytic cell apoptosis and promoted pro-inflammatory astrocyte (A1) and microglia (M1) phenotypes. Astrocytes and microglia enhanced the neurotoxic effects of ketamine on neuronal cells, whereas neurons increased oligodendrocyte cell death. Ketamine modulated different components in the BDNF pathway: decreasing BDNF secretion in neurons and astrocytes while increasing the expression of p75 in neurons and that of BDNF-AS and pro-BDNF secretion in both neurons and astrocytes. We demonstrated an important role of EVs secreted by ketamine-treated astrocytes in neuronal cell death and a role for EV-associated BDNF-AS in this effect. Conclusions: Ketamine exerted a neurotoxic effect on neural cells by impacting both neuronal and non-neuronal cells. The BDNF pathway and astrocyte-derived EVs represent important mediators of ketamine effects. These results contribute to a better understanding of ketamine neurotoxic effects in humans and to the development of potential approaches to decrease its neurodevelopmental impact.

3.
Cell Death Dis ; 11(10): 899, 2020 10 22.
Article in English | MEDLINE | ID: mdl-33093452

ABSTRACT

Glioblastoma (GBM) is a highly aggressive tumor with poor prognosis. A small subpopulation of glioma stem cells (GSCs) has been implicated in radiation resistance and tumor recurrence. In this study we analyzed the expression of miRNAs associated with the functions of GSCs using miRNA microarray analysis of these cells compared with human neural stem cells. These analyses identified gene clusters associated with glioma cell invasiveness, axonal guidance, and TGF-ß signaling. miR-504 was significantly downregulated in GSCs compared with NSCs, its expression was lower in GBM compared with normal brain specimens and further decreased in the mesenchymal glioma subtype. Overexpression of miR-504 in GSCs inhibited their self-renewal, migration and the expression of mesenchymal markers. The inhibitory effect of miR-504 was mediated by targeting Grb10 expression which acts as an oncogene in GSCs and GBM. Overexpression of exogenous miR-504 resulted also in its delivery to cocultured microglia by GSC-secreted extracellular vesicles (EVs) and in the abrogation of the GSC-induced polarization of microglia to M2 subtype. Finally, miR-504 overexpression prolonged the survival of mice harboring GSC-derived xenografts and decreased tumor growth. In summary, we identified miRNAs and potential target networks that play a role in the stemness and mesenchymal transition of GSCs and the miR-504/Grb10 pathway as an important regulator of this process. Overexpression of miR-504 exerted antitumor effects in GSCs as well as bystander effects on the polarization of microglia via delivery by EVs.


Subject(s)
Brain Neoplasms/genetics , Extracellular Vesicles/physiology , Glioblastoma/genetics , MicroRNAs/physiology , Microglia/cytology , Neoplastic Stem Cells/cytology , Animals , Brain Neoplasms/metabolism , GRB10 Adaptor Protein/physiology , Gene Expression Regulation, Neoplastic , Glioblastoma/metabolism , Humans , Mice , Mice, Nude , Microarray Analysis , Neural Stem Cells/cytology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
4.
Nucleic Acids Res ; 44(13): 6046-54, 2016 07 27.
Article in English | MEDLINE | ID: mdl-27269582

ABSTRACT

While GWAS identify many disease-associated SNPs, using them to decipher disease mechanisms is hindered by the difficulty in mapping SNPs to genes. Most SNPs are in non-coding regions and it is often hard to identify the genes they implicate. To explore how far the SNP may be from the affected genes we used a pathway-based approach. We found that affected genes are often up to 2 Mbps away from the associated SNP, and are not necessarily the closest genes to the SNP. Existing approaches for mapping SNPs to genes leave many SNPs unmapped to genes and reveal only 86 significant phenotype-pathway associations for all known GWAS hits combined. Using the pathway-based approach we propose here allows mapping of virtually all SNPs to genes and reveals 435 statistically significant phenotype-pathway associations. In search for mechanisms that may explain the relationships between SNPs and distant genes, we found that SNPs that are mapped to distant genes have significantly more large insertions/deletions around them than other SNPs, suggesting that these SNPs may sometimes be markers for large insertions/deletions that may affect large genomic regions.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Polymorphism, Single Nucleotide/genetics , Genetic Association Studies/methods , Genotype , Humans , INDEL Mutation/genetics , Linkage Disequilibrium , Phenotype
5.
PLoS One ; 9(7): e100887, 2014.
Article in English | MEDLINE | ID: mdl-25007247

ABSTRACT

The widely used pathway-based approach for interpreting Genome Wide Association Studies (GWAS), assumes that since function is executed through the interactions of multiple genes, different perturbations of the same pathway would result in a similar phenotype. This assumption, however, was not systemically assessed on a large scale. To determine whether SNPs associated with a given complex phenotype affect the same pathways more than expected by chance, we analyzed 368 phenotypes that were studied in >5000 GWAS. We found 216 significant phenotype-pathway associations between 70 of the phenotypes we analyzed and known pathways. We also report 391 strong phenotype-phenotype associations between phenotypes that are affected by the same pathways. While some of these associations confirm previously reported connections, others are new and could shed light on the molecular basis of these diseases. Our findings confirm that phenotype-associated SNPs cluster into pathways much more than expected by chance. However, this is true for <20% (70/368) of the phenotypes. Different types of phenotypes show markedly different tendencies: Virtually all autoimmune phenotypes show strong clustering of SNPs into pathways, while most cancers and metabolic conditions, and all electrophysiological phenotypes, could not be significantly associated with any pathway despite being significantly associated with a large number of SNPs. While this may be due to missing data, it may also suggest that these phenotypes could result only from perturbations of specific genes and not from other perturbations of the same pathway. Further analysis of pathway-associated versus gene-associated phenotypes is, therefore, needed in order to understand disease etiology and in order to promote better drug target selection.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Autoimmune Diseases/genetics , Carcinoma , Cluster Analysis , Genetic Predisposition to Disease , HIV Infections/genetics , Humans , Kidney Diseases/genetics , Models, Genetic , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms/genetics , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...