Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Front Microbiol ; 7: 2093, 2016.
Article in English | MEDLINE | ID: mdl-28082962

ABSTRACT

Cotton boll weevils, Anthonomus grandis, are omnivorous coleopteran that can feed on diets with different compositions, including recalcitrant lignocellulosic materials. We characterized the changes in the prokaryotic community structure and the hydrolytic activities of A. grandis larvae fed on different lignocellulosic diets. A. grandis larvae were fed on three different artificial diets: cottonseed meal (CM), Napier grass (NG) and corn stover (CS). Total DNA was extracted from the gut samples for amplification and sequencing of the V3-V4 hypervariable region of the 16S rRNA gene. Proteobacteria and Firmicutes dominated the gut microbiota followed by Actinobacteria, Spirochaetes and a small number of unclassified phyla in CM and NG microbiomes. In the CS feeding group, members of Spirochaetes were the most prevalent, followed by Proteobacteria and Firmicutes. Bray-Curtis distances showed that the samples from the CS community were clearly separated from those samples of the CM and NG diets. Gut extracts from all three diets exhibited endoglucanase, xylanase, ß-glucosidase and pectinase activities. These activities were significantly affected by pH and temperature across different diets. We observed that the larvae reared on a CM showed significantly higher activities than larvae reared on NG and CS. We demonstrated that the intestinal bacterial community structure varies depending on diet composition. Diets with more variable and complex compositions, such as CS, showed higher bacterial diversity and richness than the two other diets. In spite of the detected changes in composition and diversity, we identified a core microbiome shared between the three different lignocellulosic diets. These results suggest that feeding with diets of different lignocellulosic composition could be a viable strategy to discover variants of hemicellulose and cellulose breakdown systems.

2.
ISME J ; 7(2): 384-94, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23151641

ABSTRACT

Global climate models project a decrease in the magnitude of precipitation in tropical regions. Changes in rainfall patterns have important implications for the moisture content and redox status of tropical soils, yet little is known about how these changes may affect microbial community structure. Specifically, does exposure to prior stress confer increased resistance to subsequent perturbation? Here we reduced the quantity of precipitation throughfall to tropical forest soils in the Luquillo Mountains, Puerto Rico. Treatments included newly established throughfall exclusion plots (de novo excluded), plots undergoing reduction for a second time (pre-excluded) and ambient control plots. Ten months of throughfall exclusion led to a small but statistically significant decline in soil water potential and bacterial populations clearly adapted to increased osmotic stress. Although the water potential decline was small and microbial biomass did not change, phylogenetic diversity in the de novo-excluded plots decreased by ∼40% compared with the control plots, yet pre-excluded plots showed no significant change. On the other hand, the relative abundances of bacterial taxa in both the de novo-excluded and pre-excluded plots changed significantly with throughfall exclusion compared with control plots. Changes in bacterial community structure could be explained by changes in soil pore water chemistry and suggested changes in soil redox. Soluble iron declined in treatment plots and was correlated with decreased soluble phosphorus concentrations, which may have significant implications for microbial productivity in these P-limited systems.


Subject(s)
Droughts , Rain , Soil Microbiology , Trees/microbiology , Tropical Climate , Bacteria , Biomass , Phosphorus/chemistry , Phylogeny , Puerto Rico , Soil/analysis , Water/chemistry
3.
Res Microbiol ; 163(3): 211-20, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22313738

ABSTRACT

The hoatzin is the only known folivorous bird with foregut fermentation, and is distributed in Venezuela in rivers of the central savannas to the eastern Orinoco River. Differences in diet are expected to affect the digestive microbiota and we hypothesized that hoatzins from different habitats might have a different crop microbiota. We thus characterized the microbiota of six birds from the Cojedes and Orinoco Rivers using the G2 PhyloChip and, in parallel, we compared plant availability and foraging behavior of the hoatzins from the two locations. Plant composition differed between the 2 locations, which shared 5 out of 18 plant families and 1 plant genus--Coccoloba--that was highly consumed in both locations. The PhyloChip detected ∼1600 phylotypes from 42 phyla. There was a core microbiota with ~50% of the OTUs shared by at least 4 of the 6 individuals, but there were also differences in the crop microbiota of animals from the two regions. There existed a higher relative abundance of Alphaproteobacteria and Actinobacteria in the crops of birds from the Cojedes River and of Clostridia and Deltaproteobacteria in the crops of birds from the Orinoco River. The results showed both a core crop microbiota and also the bacterial taxa responsible for geographical differences among individuals from the two locations with different vegetation, suggesting an effect of both diet and geography in shaping the crop bacterial community of the hoatzin.


Subject(s)
Bacteria/classification , Bacteria/genetics , Biota , Birds/microbiology , Feces/microbiology , Metagenome , Animals , Feeding Behavior , Geography , Plant Development , Venezuela
4.
ISME J ; 6(3): 531-41, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21938024

ABSTRACT

Foregut fermentation occurs in mammalian ruminants and in one bird, the South American folivorous hoatzin. This bird has an enlarged crop with a function analogous to the rumen, where foregut microbes degrade the otherwise indigestible plant matter, providing energy to the host from foregut fermentation, in addition to the fermentation that occurs in their hindguts (cecum/colon). As foregut fermentation represents an evolutionary convergence between hoatzins and ruminants, our aim was to compare the community structure of foregut and hindgut bacterial communities in the cow and hoatzin to evaluate the influences of host phylogeny and organ function in shaping the gut microbiome. The approach used was to hybridize amplified bacterial ribosomal RNA genes onto a high-density microarray (PhyloChip). The results show that the microbial communities cluster primarily by functional environment (foreguts cluster separately from hindguts) and then by host. Bacterial community diversity was higher in the cow than in the hoatzin. Overall, compared with hindguts, foreguts have higher proportions of Bacteroidetes and Spirochaetes, and lower proportions of Firmicutes and Proteobacteria. The main host differences in gut bacterial composition include a higher representation of Spirochaetes, Synergistetes and Verrucomicrobia in the cow. Despite the significant differences in host phylogeny, body size, physiology and diet, the function seems to shape the microbial communities involved in fermentation. Regardless of the independent origin of foregut fermentation in birds and mammals, organ function has led to convergence of the microbial community structure in phylogenetically distant hosts.


Subject(s)
Bacteria/classification , Birds/microbiology , Cattle/microbiology , Cecum/microbiology , Crop, Avian/microbiology , Metagenome , Animals , Bacteria/genetics , Biodiversity , Biological Evolution , Cluster Analysis , Genes, rRNA , Oligonucleotide Array Sequence Analysis , Phylogeny , Rumen/microbiology , Species Specificity
5.
ISME J ; 5(4): 574-9, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20927139

ABSTRACT

The human stomach is naturally colonized by Helicobacter pylori, which, when present, dominates the gastric bacterial community. In this study, we aimed to characterize the structure of the bacterial community in the stomach of patients of differing H. pylori status. We used a high-density 16S rRNA gene microarray (PhyloChip, Affymetrix, Inc.) to hybridize 16S rRNA gene amplicons from gastric biopsy DNA of 10 rural Amerindian patients from Amazonas, Venezuela, and of two immigrants to the United States (from South Asia and Africa, respectively). H. pylori status was determined by PCR amplification of H. pylori glmM from gastric biopsy samples. Of the 12 patients, 8 (6 of the 10 Amerindians and the 2 non-Amerindians) were H. pylori glmM positive. Regardless of H. pylori status, the PhyloChip detected Helicobacteriaceae DNA in all patients, although with lower relative abundance in patients who were glmM negative. The G2-chip taxonomy analysis of PhyloChip data indicated the presence of 44 bacterial phyla (of which 16 are unclassified by the Taxonomic Outline of the Bacteria and Archaea taxonomy) in a highly uneven community dominated by only four phyla: Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. Positive H. pylori status was associated with increased relative abundance of non-Helicobacter bacteria from the Proteobacteria, Spirochetes and Acidobacteria, and with decreased abundance of Actinobacteria, Bacteroidetes and Firmicutes. The PhyloChip detected richness of low abundance phyla, and showed marked differences in the structure of the gastric bacterial community according to H. pylori status.


Subject(s)
Bacteria/classification , Helicobacter pylori/isolation & purification , Stomach/microbiology , Adult , Aged , Aged, 80 and over , Bacteria/genetics , Bacteria/isolation & purification , Biodiversity , Helicobacter pylori/genetics , Humans , Middle Aged , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL