Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38168273

ABSTRACT

The PIEZO2 ion channel is critical for transducing light touch into neural signals but is not considered necessary for transducing acute pain in humans. Here, we discovered an exception - a form of mechanical pain evoked by hair pulling. Based on observations in a rare group of individuals with PIEZO2 deficiency syndrome, we demonstrated that hair-pull pain is dependent on PIEZO2 transduction. Studies in control participants showed that hair-pull pain triggered a distinct nocifensive response, including a nociceptive reflex. Observations in rare Aß deafferented individuals and nerve conduction block studies in control participants revealed that hair-pull pain perception is dependent on Aß input. Single-unit axonal recordings revealed that a class of cooling-responsive myelinated nociceptors in human skin is selectively tuned to painful hair-pull stimuli. Further, we pharmacologically mapped these nociceptors to a specific transcriptomic class. Finally, using functional imaging in mice, we demonstrated that in a homologous nociceptor, Piezo2 is necessary for high-sensitivity, robust activation by hair-pull stimuli. Together, we have demonstrated that hair-pulling evokes a distinct type of pain with conserved behavioral, neural, and molecular features across humans and mice.

2.
Life Sci ; 308: 120943, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36096246

ABSTRACT

AIMS: GABAA receptors belong to Cys-loop ion channel family and mediate inhibition in the brain. Despite the abundance of structural data on receptor structure, the molecular scenarios of activation are unknown. In this study we investigated the role of a ß2P273 residue in channel gating transitions. This residue is located in a central position of the M2-M3 linker of the interdomain interface, expected to be predisposed to interact with another interfacial element, the ß1-ß2 loop of the extracellular side. The interactions occurring on this interface have been reported to couple agonist binding to channel gating. MAIN METHODS: We recorded micro- and macroscopic current responses of recombinant GABAA receptors mutated at the ß2P273 residue (to A, K, E) to saturating GABA. Electrophysiological data served as basis to kinetic modeling, used to decipher which gating transition were affected by mutations. KEY FINDINGS: Mutations of this residue impaired macroscopic desensitization and accelerated current deactivation with P273E mutant showing greatest deviation from wild-type. Single-channel analysis revealed alterations mainly in short-lived shut times and shortening of openings, resulting in dramatic changes in intraburst open probability. Kinetic modeling indicated that ß2P273 mutants show diminished entry into desensitized and open states as well as faster channel closing transitions. SIGNIFICANCE: In conclusion, we demonstrate that ß2P273 of the M2-M3 linker is a crucial element of the ECD-TMD interface regulating the receptor's ability to undergo late gating transitions. Henceforth, this region could be an important target for new pharmacological tools affecting GABAAR-mediated inhibition.


Subject(s)
Receptors, GABA-A , gamma-Aminobutyric Acid , Ion Channel Gating/genetics , Patch-Clamp Techniques , Proline , Receptors, GABA-A/metabolism , gamma-Aminobutyric Acid/metabolism
3.
Biochem Pharmacol ; 177: 113917, 2020 07.
Article in English | MEDLINE | ID: mdl-32194055

ABSTRACT

GABAA receptors (GABAARs) mediate inhibitory neurotransmission in the mammalian brain. Recently, numerous GABAAR static structures have been published, but the molecular mechanisms of receptor activation remain elusive. Loop G is a rigid ß-strand belonging to an extensive ß-sheet that spans the regions involved in GABA binding and the interdomain interface which is important in receptor gating. It has been reported that loop G participates in ligand binding and gating of GABAARs, however, it remains unclear which specific gating transitions are controlled by this loop. Analysis of macroscopic responses revealed that mutation at the α1F45 residue (loop G midpoint) resulted in slower macroscopic desensitization and accelerated deactivation. Single-channel analysis revealed that these mutations also affected open and closed times distributions and reduced open probability. Kinetic modeling demonstrated that mutations affected primarily channel opening/closing and ligand binding with a minor effect on preactivation. Thus, α1F45 residue, in spite of its localization close to binding site, affects late gating transitions. In silico structural analysis suggested an important role of α1F45 residue in loop G stability and rigidity as well as in general structure of the binding site. We propose that the rigid ß-sheet comprising loop G is well suited for long range communication within GABAAR but this mechanism becomes impaired when α1F45 is mutated. In conclusion, we demonstrate that loop G is crucial in controlling both binding and gating of GABAARs. These data shed new light on GABAAR activation mechanism and may also be helpful in designing clinically relevant modulators.


Subject(s)
Ion Channel Gating/genetics , Mutation , Receptors, GABA-A/chemistry , Receptors, GABA-A/metabolism , Animals , Binding Sites , HEK293 Cells , Humans , Kinetics , Patch-Clamp Techniques , Protein Binding , Protein Conformation, beta-Strand/genetics , Rats , Receptors, GABA-A/genetics , Synaptic Transmission/genetics , Transfection , gamma-Aminobutyric Acid/metabolism
4.
Front Cell Neurosci ; 14: 2, 2020.
Article in English | MEDLINE | ID: mdl-32116555

ABSTRACT

GABAA receptors (GABAARs) play a crucial role in mediating inhibition in the adult brain. In spite of progress in describing (mainly) the static structures of this receptor, the molecular mechanisms underlying its activation remain unclear. It is known that in the α1ß2γ2L receptors, the mutation of the ß2E155 residue, at the orthosteric binding site, strongly impairs the receptor activation, but the molecular and kinetic mechanisms of this effect remain elusive. Herein, we investigated the impact of the ß2E155C mutation on binding and gating of the α1ß2γ2L receptor. To this end, we combined the macroscopic and single-channel analysis, the use of different agonists [GABA and muscimol (MSC)] and flurazepam (FLU) as a modulator. As expected, the ß2E155C mutation caused a vast right shift of the dose-response (for GABA and MSC) and, additionally, dramatic changes in the time course of current responses, indicative of alterations in gating. Mutated receptors showed reduced maximum open probability and enhanced receptor spontaneous activity. Model simulations for macroscopic currents revealed that the primary effect of the mutation was the downregulation of the preactivation (flipping) rate. Experiments with MSC and FLU further confirmed a reduction in the preactivation rate. Our single-channel analysis revealed the mutation impact mainly on the second component in the shut times distributions. Based on model simulations, this finding further confirms that this mutation affects mostly the preactivation transition, supporting thus the macroscopic data. Altogether, we provide new evidence that the ß2E155 residue is involved in both binding and gating (primarily preactivation).

5.
Front Cell Neurosci ; 12: 237, 2018.
Article in English | MEDLINE | ID: mdl-30210295

ABSTRACT

GABAA receptors (GABAARs) play a crucial inhibitory role in the CNS. Benzodiazepines (BDZs) are positive modulators of specific subtypes of GABAARs, but the underlying mechanism remains obscure. Early studies demonstrated the major impact of BDZs on binding and more recent investigations indicated gating, but it is unclear which transitions are affected. Moreover, the upregulation of GABAAR spontaneous activity by BDZs indicates their impact on receptor gating but the underlying mechanisms remain unknown. Herein, we investigated the effect of a BDZ (flurazepam) on the spontaneous and GABA-induced activity for wild-type (WT, α1ß2γ2) and mutated (at the orthosteric binding site α1F64) GABAARs. Surprisingly, in spite of the localization at the binding site, these mutations increased the spontaneous activity. Flurazepam (FLU) upregulated this activity for mutants and WT receptors to a similar extent by affecting opening/closing transitions. Spontaneous activity affected GABA-evoked currents and is manifested as an overshoot after agonist removal that depended on the modulation by BDZs. We explain the mechanism of this phenomenon as a cross-desensitization of ligand-activated and spontaneously active receptors. Moreover, due to spontaneous activity, FLU-pretreatment and co-application (agonist + FLU) protocols yielded distinct results. We provide also the first evidence that GABAAR may enter the desensitized state in the absence of GABA in a FLU-dependent manner. Based on our data and model simulations, we propose that FLU affects agonist-induced gating by modifying primarily preactivation and desensitization. We conclude that the mechanisms of modulation of spontaneous and ligand-activated GABAAR activity concerns gating but distinct transitions are affected in spontaneous and agonist-evoked activity.

6.
Neuropharmacology ; 131: 453-474, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29162430

ABSTRACT

GABAA receptor is the primary mediator of inhibition in the adult mammalian brain. Our recent studies revealed that a classic gating scheme for GABAAR needed to be updated with an intermediate step (flipping) and that the α1Phe64 mutation at the GABA binding site affects this transition. However, description of flipping at the single-channel level remains incomplete. In particular, its role in singly-bound and spontaneous activity remains unknown. We have performed thus single-channel recordings over wide range of agonist concentration for wild-type α1ß2γ2L receptors and α1Phe64 mutants. For WT receptors we observed relatively frequent brief spontaneous openings which were also present at low [GABA]. However, closed times distributions for spontaneous activity and at low [GABA] were clearly different indicating that a proportion of short-lived openings were due to liganded, most likely singly bound receptors. Increasing [GABA] resulted in prolongation of bursts and increased occurrence of bursts with long openings and short closures. Mutations of α1Phe64 residue dramatically affected the open and closed time distributions at high and saturating [GABA], especially in the case of cysteine mutants. However, this mutation weakly affected spontaneous or singly bound activity. Model fitting of our single-channel data led us to propose a novel and, to our knowledge, most complete GABAAR kinetic model in which flipping occurs in singly and doubly bound states. However, spontaneous activity did not reveal involvement of flipping. Moreover, we report that α1Phe64 mutation affects not only the flipping but also the opening/closing transitions indicating its generalized impact on the receptor gating.


Subject(s)
Models, Molecular , Receptors, GABA-A/genetics , Receptors, GABA-A/metabolism , Animals , Dose-Response Relationship, Drug , GABA-A Receptor Agonists/pharmacology , HEK293 Cells , Humans , Kinetics , Membrane Potentials/drug effects , Membrane Potentials/physiology , Mutation , Patch-Clamp Techniques , Protein Binding , Rats , gamma-Aminobutyric Acid/metabolism , gamma-Aminobutyric Acid/pharmacology
7.
Eur J Pharmacol ; 784: 81-9, 2016 Aug 05.
Article in English | MEDLINE | ID: mdl-27179992

ABSTRACT

The fastest inhibitory mechanism in the CNS is mediated by ionotropic GABAA receptors and it is known that subunit composition critically determines their properties. While a typical GABAA receptor consists of two α, two ß and one γ/δ subunit, there are some exceptions, e.g. αß receptors. Functional α1γ2 GABAA receptors can be expressed in recombinant model (Verdoorn et al., 1990) and although their role remains unknown, it seems appealing to extend their characterization to further explore the structure-function relationship of GABAA receptors. Intriguingly, this receptor is lacking canonical GABA binding sites but it can be activated by GABA and dose-response relationships for α1ß2γ2L and α1γ2L receptors overlap. Deactivation kinetics was similar for both receptors but the percentage of the fast component was smaller in the case of α1γ2L receptors and, consequently, the mean deactivation time constant was slower. The rate and extent of macroscopic desensitization were smaller in the case of α1γ2L receptors but they showed slower recovery. Both receptor types had a similar proton sensitivity showing only subtle but significant differences in pH effects on deactivation. Flurazepam exerted a similar effect on both receptors but the rapid deactivation components were differently affected and an opposite effect was observed on desensitization extent. Rebound currents evoked by pentobarbital were undistinguishable for both receptor types. Taking altogether, although some significant differences were found, α1ß2γ2L and α1γ2L receptors showed unforeseen similarity. We propose that functioning of GABAA receptors might rely on subunit-subunit cooperative interactions to a larger extent than believed so far.


Subject(s)
Protein Subunits/metabolism , Receptors, GABA-A/chemistry , Receptors, GABA-A/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Electrophysiological Phenomena/drug effects , Flurazepam/pharmacology , HEK293 Cells , Humans , Kinetics , Protein Binding , gamma-Aminobutyric Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...