Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Opin Microbiol ; 77: 102425, 2024 02.
Article in English | MEDLINE | ID: mdl-38262273

ABSTRACT

During phage infection, both virus and bacteria attempt to gain and/or maintain control over critical bacterial functions, through a plethora of strategies. These strategies include posttranslational modifications (PTMs, including phosphorylation, ribosylation, and acetylation), as rapid and dynamic regulators of protein behavior. However, to date, knowledge on the topic remains scarce and fragmented, while a more systematic investigation lies within reach. The release of AlphaFold, which advances PTM enzyme discovery and functional elucidation, and the increasing inclusivity and scale of mass spectrometry applications to new PTM types, could significantly accelerate research in the field. In this review, we highlight the current knowledge on PTMs during phage infection, and conceive a possible pipeline for future research, following an enzyme-target-function scheme.


Subject(s)
Bacteriophages , Bacteriophages/genetics , Protein Processing, Post-Translational , Phosphorylation , Proteins , Bacteria/genetics
2.
Bioinformatics ; 40(1)2024 01 02.
Article in English | MEDLINE | ID: mdl-38195744

ABSTRACT

SUMMARY: Today, hundreds of post-translational modification (PTM) sites are routinely identified at once, but the comparison of new experimental datasets to already existing ones is hampered by the current inability to search most PTM databases at the protein residue level. We present FLAMS (Find Lysine Acylations and other Modification Sites), a Python3-based command line and web-tool that enables researchers to compare their PTM sites to the contents of the CPLM, the largest dedicated protein lysine modification database, and dbPTM, the most comprehensive general PTM database, at the residue level. FLAMS can be integrated into PTM analysis pipelines, allowing researchers to quickly assess the novelty and conservation of PTM sites across species in newly generated datasets, aiding in the functional assessment of sites and the prioritization of sites for further experimental characterization. AVAILABILITY AND IMPLEMENTATION: FLAMS is implemented in Python3, and freely available under an MIT license. It can be found as a command line tool at https://github.com/hannelorelongin/FLAMS, pip and conda; and as a web service at https://www.biw.kuleuven.be/m2s/cmpg/research/CSB/tools/flams/.


Subject(s)
Lysine , Protein Processing, Post-Translational , Databases, Protein , Acylation
3.
Microb Biotechnol ; 15(6): 1762-1782, 2022 06.
Article in English | MEDLINE | ID: mdl-35084112

ABSTRACT

Xanthomonas campestris pv. campestris (Xcc) is a vascular pathogen that invades the xylem of Brassica crops. Current chemical and antibiotics-based control measures for this bacterium are unsustainable and inefficient. After establishing a representative collection of Xcc strains, we isolated and characterized bacteriophages from two clades of phages to assess their potential in phage-based biocontrol. The most promising phages, FoX2 and FoX6, specifically recognize (lipo) polysaccharides, associated with the wxc gene cluster, on the surface of the bacterial cell wall. Next, we determined and optimized the applicability of FoX2 and FoX6 in an array of complementary bioassays, ranging from seed decontamination to irrigation- and spray-based applications. Here, an irrigation-based application showed promising results. In a final proof-of-concept, a CaCl2 -formulated phage cocktail was shown to control the outbreak of Xcc in the open field. This comprehensive approach illustrates the potential of phage biocontrol of black rot disease in Brassica and serves as a reference for the broader implementation of phage biocontrol in integrated pest management strategies.


Subject(s)
Bacteriophages , Brassica , Xanthomonas campestris , Brassica/genetics , Brassica/microbiology , Multigene Family , Plant Diseases/microbiology , Plant Diseases/prevention & control , Xanthomonas campestris/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...