Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Talanta ; 179: 386-392, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29310249

ABSTRACT

Calibration transfer or standardisation aims at creating a uniform spectral response on different spectroscopic instruments or under varying conditions, without requiring a full recalibration for each situation. In the current study, this strategy is applied to construct at-line multivariate calibration models and consequently employ them in-line in a continuous industrial production line, using the same spectrometer. Firstly, quantitative multivariate models are constructed at-line at laboratory scale for predicting the concentration of two main ingredients in hard surface cleaners. By regressing the Raman spectra of a set of small-scale calibration samples against their reference concentration values, partial least squares (PLS) models are developed to quantify the surfactant levels in the liquid detergent compositions under investigation. After evaluating the models performance with a set of independent validation samples, a univariate slope/bias correction is applied in view of transporting these at-line calibration models to an in-line manufacturing set-up. This standardisation technique allows a fast and easy transfer of the PLS regression models, by simply correcting the model predictions on the in-line set-up, without adjusting anything to the original multivariate calibration models. An extensive statistical analysis is performed in order to assess the predictive quality of the transferred regression models. Before and after transfer, the R2 and RMSEP of both models is compared for evaluating if their magnitude is similar. T-tests are then performed to investigate whether the slope and intercept of the transferred regression line are not statistically different from 1 and 0, respectively. Furthermore, it is inspected whether no significant bias can be noted. F-tests are executed as well, for assessing the linearity of the transfer regression line and for investigating the statistical coincidence of the transfer and validation regression line. Finally, a paired t-test is performed to compare the original at-line model to the slope/bias corrected in-line model, using interval hypotheses. It is shown that the calibration models of Surfactant 1 and Surfactant 2 yield satisfactory in-line predictions after slope/bias correction. While Surfactant 1 passes seven out of eight statistical tests, the recommended validation parameters are 100% successful for Surfactant 2. It is hence concluded that the proposed strategy for transferring at-line calibration models to an in-line industrial environment via a univariate slope/bias correction of the predicted values offers a successful standardisation approach.

2.
Anal Chim Acta ; 984: 1-18, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28843552

ABSTRACT

Calibration transfer of partial least squares (PLS) quantification models is established between two Raman spectrometers located at two liquid detergent production plants. As full recalibration of existing calibration models is time-consuming, labour-intensive and costly, it is investigated whether the use of mathematical correction methods requiring only a handful of standardization samples can overcome the dissimilarities in spectral response observed between both measurement systems. Univariate and multivariate standardization approaches are investigated, ranging from simple slope/bias correction (SBC), local centring (LC) and single wavelength standardization (SWS) to more complex direct standardization (DS) and piecewise direct standardization (PDS). The results of these five calibration transfer methods are compared reciprocally, as well as with regard to a full recalibration. Four PLS quantification models, each predicting the concentration of one of the four main ingredients in the studied liquid detergent composition, are aimed at transferring. Accuracy profiles are established from the original and transferred quantification models for validation purposes. A reliable representation of the calibration models performance before and after transfer is thus established, based on ß-expectation tolerance intervals. For each transferred model, it is investigated whether every future measurement that will be performed in routine will be close enough to the unknown true value of the sample. From this validation, it is concluded that instrument standardization is successful for three out of four investigated calibration models using multivariate (DS and PDS) transfer approaches. The fourth transferred PLS model could not be validated over the investigated concentration range, due to a lack of precision of the slave instrument. Comparing these transfer results to a full recalibration on the slave instrument allows comparison of the predictive power of both Raman systems and leads to the formulation of guidelines for further standardization projects. It is concluded that it is essential to evaluate the performance of the slave instrument prior to transfer, even when it is theoretically identical to the master apparatus.

3.
Anal Chim Acta ; 971: 14-25, 2017 Jun 08.
Article in English | MEDLINE | ID: mdl-28456279

ABSTRACT

The industrial production of liquid detergent compositions entails delicate balance of ingredients and process steps. In order to assure high quality and productivity in the manufacturing line, process analytical technology tools such as Raman spectroscopy are to be implemented. Marked chemical specificity, negligible water interference and high robustness are ascribed to this process analytical technique. Previously, at-line calibration models have been developed for determining the concentration levels of the being studied liquid detergents main ingredients from Raman spectra. A strategy is now proposed to transfer such at-line developed regression models to an in-line set-up, allowing real-time dosing control of the liquid detergent composition under production. To mimic in-line manufacturing conditions, liquid detergent compositions are created in a five-liter vessel with an overhead mixer. Raman spectra are continuously acquired by pumping the detergent under production via plastic tubing towards a Raman superhead probe, which is incorporated into a metal frame with a sapphire window facing the detergent fluid. Two at-line developed partial least squares (PLS) models are aimed at transferring, predicting the concentration of surfactant 1 and polymer 2 in the examined liquid detergent composition. A univariate slope/bias correction (SBC) is investigated, next to three well-acknowledged multivariate transformation methods: direct, piecewise and double-window piecewise direct standardization. Transfer is considered successful when the magnitude of the validation sets root mean square error of prediction (RMSEP) is similar to or smaller than the corresponding at-line prediction error. The transferred model offering the most promising outcome is further subjected to an exhaustive statistical evaluation, in order to appraise the applicability of the suggested calibration transfer method. Interval hypothesis tests are thereby performed for method comparison. It is illustrated that the investigated transfer approach yields satisfactory results, provided that the original at-line calibration model is thoroughly validated. Both SBC transfer models return lower RMSEP values than their corresponding original models. The surfactant 1 assay met all relevant evaluation criteria, demonstrating successful transfer to the in-line set-up. The in-line quantification of polymer 2 levels in the liquid detergent composition could not be statistically validated, due to the poorer performance of the at-line model.

4.
Anal Chim Acta ; 941: 26-34, 2016 Oct 19.
Article in English | MEDLINE | ID: mdl-27692375

ABSTRACT

Implementation of process analytical technology (PAT) tools in the manufacturing process of liquid detergent compositions should allow fast and non-destructive evaluation of the product quality. The aim of this study was to develop and validate a rapid method for quantifying the chemical compounds of five washing liquid precursors. Raman spectroscopy was applied in combination with a two-step multivariate modeling procedure. In first instance, a SIMCA (Soft Independent Modeling of Class Analogy) model was developed and validated, allowing the distinction between the different laundry detergents. Once the product was correctly identified, it was aimed at predicting the concentration of its individual components using partial least squares (PLS) models. Raman spectra were collected at-line with a total acquisition time of 20 s, using a non-contact fiber-optic probe. The SIMCA model was perfectly capable of differentiating between the classes of the laundry liquid precursors. Per detergent, the concentration of at least three main ingredients could be predicted with a recovery between 98% and 102% and a standard deviation below 2.5%. Accuracy profiles based on the analysis results of validation samples were then calculated to prove the reliability of the developed regression models. ß-expectation tolerance intervals were calculated for each model and for each validated concentration level. The acceptance limits were set at 5% relative bias, indicating that at least 95% of future measurements should not deviate more than 5% from the true value. Furthermore, based on the data of the accuracy profiles, the measurement uncertainty was determined. The developed Raman spectroscopic method demonstrated to be able to rapidly and adequately determine the concentration of the components of interest in the liquid detergent compositions at-line.

7.
Acta Paediatr Scand ; 78(5): 806-10, 1989 Sep.
Article in English | MEDLINE | ID: mdl-2596292

ABSTRACT

A boy aged 2 years, born prematurely to Gipsy parents, presented with hypopigmentation severe encephalopathy with athetoid movements, bilateral ocular anomalies including cloudy corneas, iris atrophy and cataracts, as well as dental defects. Ultrastructural examination of the skin disclosed scare melanosomes. Although the neurologic and ocular anomalies might have been accounted for by his extreme prematurity, their association with hypomelanogenesis and dental defects support, in this patient the diagnosis of the oculocerebral hypopigmentation syndrome (Cross syndrome).


Subject(s)
Albinism/diagnosis , Cataract/diagnosis , Dental Enamel Hypoplasia/diagnosis , Intellectual Disability/diagnosis , Child, Preschool , Humans , Male , Skin/pathology , Syndrome
9.
Contact Dermatitis ; 16(4): 189-94, 1987 Apr.
Article in English | MEDLINE | ID: mdl-3595117

ABSTRACT

A study of cosmetic intolerance has been undertaken in 5202 patients tested for possible contact dermatitis. Each patient has been evaluated by medical history and patch testing. Intolerance to cosmetics involved only 5.9% of the total population tested. If other possible sources of allergens (medication, occupation, hobbies etc) are associated, this figure rises to 11.7%. The origin of the cosmetic intolerance is more often an allergy than irritation. Soaps and shampoos are the most important types of cosmetics responsible for adverse reactions. The principal allergens are the fragrances, preservatives, hair dyes and the patients' own products. In this last category, the specific allergen has not always been detected.


Subject(s)
Cosmetics/adverse effects , Dermatitis, Contact/etiology , Adult , Belgium , Dermatitis, Contact/epidemiology , Female , Humans , Irritants , Male , Occupations
SELECTION OF CITATIONS
SEARCH DETAIL
...