Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Cell Infect Microbiol ; 13: 1125482, 2023.
Article in English | MEDLINE | ID: mdl-36875521

ABSTRACT

α-helical coiled-coils are ubiquitous protein structures in all living organisms. For decades, modified coiled-coils sequences have been used in biotechnology, vaccine development, and biochemical research to induce protein oligomerization, and form self-assembled protein scaffolds. A prominent model for the versatility of coiled-coil sequences is a peptide derived from the yeast transcription factor, GCN4. In this work, we show that its trimeric variant, GCN4-pII, binds bacterial lipopolysaccharides (LPS) from different bacterial species with picomolar affinity. LPS molecules are highly immunogenic, toxic glycolipids that comprise the outer leaflet of the outer membrane of Gram-negative bacteria. Using scattering techniques and electron microscopy, we show how GCN4-pII breaks down LPS micelles in solution. Our findings suggest that the GCN4-pII peptide and derivatives thereof could be used for novel LPS detection and removal solutions with high relevance to the production and quality control of biopharmaceuticals and other biomedical products, where even minuscule amounts of residual LPS can be lethal.


Subject(s)
Glycolipids , Lipopolysaccharides , Protein Domains , Saccharomyces cerevisiae
2.
Front Microbiol ; 11: 510638, 2020.
Article in English | MEDLINE | ID: mdl-33072001

ABSTRACT

Bacteriophages use a large number of different bacterial cell envelope structures as receptors for surface attachment. As a consequence, bacterial surfaces represent a major control point for the defense against phage attack. One strategy for phage population control is the production of outer membrane vesicles (OMVs). In Gram-negative host bacteria, O-antigen-specific bacteriophages address lipopolysaccharide (LPS) to initiate infection, thus relying on an essential outer membrane glycan building block as receptor that is constantly present also in OMVs. In this work, we have analyzed interactions of Salmonella (S.) bacteriophage P22 with OMVs. For this, we isolated OMVs that were formed in large amounts during mechanical cell lysis of the P22 S. Typhimurium host. In vitro, these OMVs could efficiently reduce the number of infective phage particles. Fluorescence spectroscopy showed that upon interaction with OMVs, bacteriophage P22 released its DNA into the vesicle lumen. However, only about one third of the phage P22 particles actively ejected their genome. For the larger part, no genome release was observed, albeit the majority of phages in the system had lost infectivity towards their host. With OMVs, P22 ejected its DNA more rapidly and could release more DNA against elevated osmotic pressures compared to DNA release triggered with protein-free LPS aggregates. This emphasizes that OMV composition is a key feature for the regulation of infective bacteriophage particles in the system.

3.
J Biol Chem ; 294(31): 11751-11761, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31189652

ABSTRACT

Myoviruses, bacteriophages with T4-like architecture, must contract their tails prior to DNA release. However, quantitative kinetic data on myovirus particle opening are lacking, although they are promising tools in bacteriophage-based antimicrobial strategies directed against Gram-negative hosts. For the first time, we show time-resolved DNA ejection from a bacteriophage with a contractile tail, the multi-O-antigen-specific Salmonella myovirus Det7. DNA release from Det7 was triggered by lipopolysaccharide (LPS) O-antigen receptors and notably slower than in noncontractile-tailed siphoviruses. Det7 showed two individual kinetic steps for tail contraction and particle opening. Our in vitro studies showed that highly specialized tailspike proteins (TSPs) are necessary to attach the particle to LPS. A P22-like TSP confers specificity for the Salmonella Typhimurium O-antigen. Moreover, crystal structure analysis at 1.63 Šresolution confirmed that Det7 recognized the Salmonella Anatum O-antigen via an ϵ15-like TSP, DettilonTSP. DNA ejection triggered by LPS from either host showed similar velocities, so particle opening is thus a process independent of O-antigen composition and the recognizing TSP. In Det7, at permissive temperatures TSPs mediate O-antigen cleavage and couple cell surface binding with DNA ejection, but no irreversible adsorption occurred at low temperatures. This finding was in contrast to short-tailed Salmonella podoviruses, illustrating that tailed phages use common particle-opening mechanisms but have specialized into different infection niches.


Subject(s)
DNA, Viral/metabolism , Salmonella Phages/metabolism , Salmonella typhimurium/virology , Crystallography, X-Ray , Glycoside Hydrolases , Lipopolysaccharides/pharmacology , O Antigens/metabolism , Protein Structure, Tertiary , Salmonella Phages/drug effects , Salmonella typhimurium/metabolism , Viral Tail Proteins/chemistry , Viral Tail Proteins/metabolism
4.
J Am Chem Soc ; 140(33): 10447-10455, 2018 08 22.
Article in English | MEDLINE | ID: mdl-30044908

ABSTRACT

The principles of protein-glycan binding are still not well understood on a molecular level. Attempts to link affinity and specificity of glycan recognition to structure suffer from the general lack of model systems for experimental studies and the difficulty to describe the influence of solvent. We have experimentally and computationally addressed energetic contributions of solvent in protein-glycan complex formation in the tailspike protein (TSP) of E. coli bacteriophage HK620. HK620TSP is a 230 kDa native trimer of right-handed, parallel beta-helices that provide extended, rigid binding sites for bacterial cell surface O-antigen polysaccharides. A set of high-affinity mutants bound hexa- or pentasaccharide O-antigen fragments with very similar affinities even though hexasaccharides introduce an additional glucose branch into an occluded protein surface cavity. Remarkably different thermodynamic binding signatures were found for different mutants; however, crystal structure analyses indicated that no major oligosaccharide or protein topology changes had occurred upon complex formation. This pointed to a solvent effect. Molecular dynamics simulations using a mobility-based approach revealed an extended network of solvent positions distributed over the entire oligosaccharide binding site. However, free energy calculations showed that a small water network inside the glucose-binding cavity had the most notable influence on the thermodynamic signature. The energy needed to displace water from the glucose binding pocket depended on the amino acid at the entrance, in agreement with the different amounts of enthalpy-entropy compensation found for introducing glucose into the pocket in the different mutants. Studies with small molecule drugs have shown before that a few active water molecules can control protein complex formation. HK620TSP oligosaccharide binding shows that similar fundamental principles also apply for glycans, where a small number of water molecules can dominate the thermodynamic signature in an extended binding site.


Subject(s)
Oligosaccharides/chemistry , Proteins/chemistry , Solvents/chemistry , Thermodynamics , Binding Sites , Coliphages/chemistry , Crystallography, X-Ray , Glycoside Hydrolases , Molecular Dynamics Simulation , Protein Conformation , Viral Tail Proteins/chemistry
5.
Viruses ; 10(6)2018 05 29.
Article in English | MEDLINE | ID: mdl-29843473

ABSTRACT

Gram-negative bacteria protect themselves with an outermost layer containing lipopolysaccharide (LPS). O-antigen-specific bacteriophages use tailspike proteins (TSP) to recognize and cleave the O-polysaccharide part of LPS. However, O-antigen composition and structure can be highly variable depending on the environmental conditions. It is important to understand how these changes may influence the early steps of the bacteriophage infection cycle because they can be linked to changes in host range or the occurrence of phage resistance. In this work, we have analyzed how LPS preparations in vitro trigger particle opening and DNA ejection from the E. coli podovirus HK620. Fluorescence-based monitoring of DNA release showed that HK620 phage particles in vitro ejected their genome at velocities comparable to those found for other podoviruses. Moreover, we found that HK620 irreversibly adsorbed to the LPS receptor via its TSP at restrictive low temperatures, without opening the particle but could eject its DNA at permissive temperatures. DNA ejection was solely stimulated by LPS, however, the composition of the O-antigen dictated whether the LPS receptor could start the DNA release from E. coli phage HK620 in vitro. This finding can be significant when optimizing bacteriophage mixtures for therapy, where in natural environments O-antigen structures may rapidly change.


Subject(s)
DNA, Viral/metabolism , Lipopolysaccharides/pharmacology , Podoviridae/drug effects , Podoviridae/genetics , Bacteriophage P22/genetics , Escherichia coli/virology , Glycoside Hydrolases , Temperature , Viral Tail Proteins/metabolism
6.
Mol Microbiol ; 105(3): 353-357, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28618013

ABSTRACT

Tailed bacteriophages specific for Gram-negative bacteria encounter lipopolysaccharide (LPS) during the first infection steps. Yet, it is not well understood how biochemistry of these initial interactions relates to subsequent events that orchestrate phage adsorption and tail rearrangements to initiate cell entry. For many phages, long O-antigen chains found on the LPS of smooth bacterial strains serve as essential receptor recognized by their tailspike proteins (TSP). Many TSP are depolymerases and O-antigen cleavage was described as necessary step for subsequent orientation towards a secondary receptor. However, O-antigen specific host attachment must not always come along with O-antigen degradation. In this issue of Molecular Microbiology Prokhorov et al. report that coliphage G7C carries a TSP that deacetylates O-antigen but does not degrade it, whereas rough strains or strains lacking O-antigen acetylation remain unaffected. Bacteriophage G7C specifically functionalizes its tail by attaching the deacetylase TSP directly to a second TSP that is nonfunctional on the host's O-antigen. This challenges the view that bacteriophages use their TSP only to clear their way to a secondary receptor. Rather, O-antigen specific phages may employ enzymatically active TSP as a tool for irreversible LPS membrane binding to initiate subsequent infection steps.


Subject(s)
O Antigens/metabolism , Viral Tail Proteins/metabolism , Bacteriophage P22/metabolism , Bacteriophages/physiology , Lipopolysaccharides/metabolism , O Antigens/physiology , Salmonella typhimurium/metabolism , Structure-Activity Relationship
7.
BMC Microbiol ; 16: 207, 2016 09 07.
Article in English | MEDLINE | ID: mdl-27604475

ABSTRACT

BACKGROUND: Non-typhoid Salmonella Typhimurium (S. Typhimurium) accounts for a high number of registered salmonellosis cases, and O-serotyping is one important tool for monitoring epidemiology and spread of the disease. Moreover, variations in glucosylated O-antigens are related to immunogenicity and spread in the host. However, classical autoagglutination tests combined with the analysis of specific genetic markers cannot always reliably register phase variable glucose modifications expressed on Salmonella O-antigens and additional tools to monitor O-antigen glucosylation phenotypes of S. Typhimurium would be desirable. RESULTS: We developed a test for the phase variable O-antigen glucosylation state of S. Typhimurium using the tailspike proteins (TSP) of Salmonella phages 9NA and P22. We used this ELISA like tailspike adsorption (ELITA) assay to analyze a library of 44 Salmonella strains. ELITA was successful in discriminating strains that carried glucose 1-6 linked to the galactose of O-polysaccharide backbone (serotype O1) from non-glucosylated strains. This was shown by O-antigen compositional analyses of the respective strains with mass spectrometry and capillary electrophoresis. The ELITA test worked rapidly in a microtiter plate format and was highly O-antigen specific. Moreover, TSP as probes could also detect glucosylated strains in flow cytometry and distinguish multiphasic cultures differing in their glucosylation state. CONCLUSIONS: Tailspike proteins contain large binding sites with precisely defined specificities and are therefore promising tools to be included in serotyping procedures as rapid serotyping agents in addition to antibodies. In this study, 9NA and P22TSP as probes could specifically distinguish glucosylation phenotypes of Salmonella on microtiter plate assays and in flow cytometry. This opens the possibility for flow sorting of cell populations for subsequent genetic analyses or for monitoring phase variations during large scale O-antigen preparations necessary for vaccine production.


Subject(s)
O Antigens/analysis , Salmonella typhimurium/isolation & purification , Serotyping/methods , Viral Tail Proteins/analysis , Binding Sites , Electrophoresis, Capillary , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Glycoside Hydrolases , Lipopolysaccharides/analysis , Oligosaccharides/analysis , Phenotype , Polysaccharides/analysis , Salmonella Phages , Salmonella typhimurium/metabolism , Species Specificity , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Virus Diseases
8.
Glycobiology ; 23(4): 486-94, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23292517

ABSTRACT

Bacteriophage P22 recognizes O-antigen polysaccharides of Salmonella enterica subsp. enterica (S.) with its tailspike protein (TSP). In the serovars S. Typhimurium, S. Enteritidis, and S. Paratyphi A, the tetrasaccharide repeat units of the respective O-antigens consist of an identical main chain trisaccharide but different 3,6-dideoxyhexose substituents. Here, the epimers abequose, tyvelose and paratose determine the specific serotype. P22 TSP recognizes O-antigen octasaccharides in an extended binding site with a single 3,6-dideoxyhexose binding pocket. We have isolated S. Paratyphi A octasaccharides which were not available previously and determined the crystal structure of their complex with P22 TSP. We discuss our data together with crystal structures of complexes with S. Typhimurium and S. Enteritidis octasaccharides determined earlier. Isothermal titration calorimetry showed that S. Paratyphi A octasaccharide binds P22 TSP less tightly, with a difference in binding free energy of ∼7 kJ mol(-1) at 20°C compared with S. Typhimurium and S. Enteritidis octasaccharides. Individual protein-carbohydrate contacts were probed by amino acid replacements showing that the dideoxyhexose pocket contributes to binding of all three serotypes. However, S. Paratyphi A octasaccharides bind in a conformation with an energetically unfavorable ϕ/ψ glycosidic bond angle combination. In contrast, octasaccharides from the other serotypes bind as solution-like conformers. Two water molecules are conserved in all P22 TSP complexes with octasaccharides of different serotypes. They line the dideoxyhexose binding pocket and force the S. Paratyphi A octasaccharides to bind as nonsolution conformers. This emphasizes the role of solvent as part of carbohydrate binding sites.


Subject(s)
Bacteriophage P22/chemistry , O Antigens/chemistry , Salmonella paratyphi A/chemistry , Viral Tail Proteins/chemistry , Amino Acid Sequence , Binding Sites , Carbohydrate Conformation , Carbohydrate Sequence , Glycoside Hydrolases , Hexoses/chemistry , Molecular Docking Simulation , Molecular Sequence Data , Mutation , O Antigens/metabolism , Protein Binding , Salmonella paratyphi A/virology , Viral Tail Proteins/genetics , Viral Tail Proteins/metabolism
9.
Glycobiology ; 23(1): 59-68, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22923442

ABSTRACT

Bacteriophage HK620 recognizes and cleaves the O-antigen polysaccharide of Escherichia coli serogroup O18A1 with its tailspike protein (TSP). HK620TSP binds hexasaccharide fragments with low affinity, but single amino acid exchanges generated a set of high-affinity mutants with submicromolar dissociation constants. Isothermal titration calorimetry showed that only small amounts of heat were released upon complex formation via a large number of direct and solvent-mediated hydrogen bonds between carbohydrate and protein. At room temperature, association was both enthalpy- and entropy-driven emphasizing major solvent rearrangements upon complex formation. Crystal structure analysis showed identical protein and sugar conformers in the TSP complexes regardless of their hexasaccharide affinity. Only in one case, a TSP mutant bound a different hexasaccharide conformer. The extended sugar binding site could be dissected in two regions: first, a hydrophobic pocket at the reducing end with minor affinity contributions. Access to this site could be blocked by a single aspartate to asparagine exchange without major loss in hexasaccharide affinity. Second, a region where the specific exchange of glutamate for glutamine created a site for an additional water molecule. Side-chain rearrangements upon sugar binding led to desolvation and additional hydrogen bonding which define this region of the binding site as the high-affinity scaffold.


Subject(s)
Coliphages/metabolism , Oligosaccharides/metabolism , Viral Tail Proteins/chemistry , Amino Acids , Asparagine/genetics , Asparagine/metabolism , Aspartic Acid/genetics , Aspartic Acid/metabolism , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Glycoside Hydrolases , Hydrogen Bonding , Models, Molecular , O Antigens/chemistry , O Antigens/metabolism , Oligosaccharides/chemistry , Protein Conformation , Surface Properties , Thermodynamics , Viral Tail Proteins/genetics , Viral Tail Proteins/metabolism
10.
Carbohydr Res ; 357: 118-25, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22704196

ABSTRACT

We have analyzed the O-antigen polysaccharide of the previously uncharacterized Escherichia coli strain TD2158 which is a host of bacteriophage HK620. This bacteriophage recognizes and cleaves the polysaccharide with its tailspike protein (TSP). The polysaccharide preparation as well as oligosaccharides obtained from HK620TSP endoglycosidase digests were analyzed with NMR spectroscopy. Additionally, sugar analysis was performed on the O-antigen polysaccharide and MALDI-TOF MS was used in oligosaccharide analysis. The present study revealed a heterogeneous polysaccharide with a hexasaccharide repeating unit of the following structure: α-D-Glcp-(1→6|) →2)-α-L-Rhap-91→6)-α-D-Glcp-(1→4)-α-D-Ga|lp-(1→3)-α-D-GlcpNAc-(1→ ß-D-Glcp/ß-D-GlcpNAc-(1→3) A repeating unit with a D-GlcNAc substitution of D-Gal has been described earlier as characteristic for serogroup O18A1. Accordingly, we termed repeating units with D-Glc substitution at D-Gal as O18A2. NMR analyses of the polysaccharide confirmed that O18A1- and O18A2-type repeats were present in a 1:1 ratio. However, HK620TSP preferentially bound the D-GlcNAc-substituted O18A1-type repeating units in its high affinity binding pocket with a dissociation constant of 140 µM and disfavored the O18A2-type having a ß-D-Glcp-(1→3)-linked group. As a result, in hexasaccharide preparations, O18A1 and O18A2 repeats were present in a 9:1 ratio stressing the clear preference of O18A1-type repeats to be cleaved by HK620TSP.


Subject(s)
Escherichia coli/chemistry , Glycoside Hydrolases/chemistry , O Antigens/chemistry , Podoviridae/physiology , Viral Tail Proteins/chemistry , Carbohydrate Conformation , Carbohydrate Sequence , Catalytic Domain , Escherichia coli/virology , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Models, Molecular , Podoviridae/enzymology , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...