Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
1.
RSC Adv ; 14(31): 22132-22146, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39005246

ABSTRACT

Antitumor activity using 59 cancer cell lines and enzyme inhibitory activity of a newly synthesized pyrazoline-linked 4-methylsulfonylphenyl scaffold (compounds 18a-q) were measured and compared with those of standard drugs. Pyrazolines 18b, 18c, 18f, 18g, 18h, and 18n possessed significant antitumor activity, with a positive cytotoxic effect (PCE) of 22/59, 21/59, 21/59, 48/59, 51/59, and 20/59, respectively. The cancer cell lines HL60, MCF-7, and MDA-MB-231 were used to measure the IC50 values of derivatives 18c, 18g, and 18hvia the MTT assay method, and the results were compared with those of reference drugs. Derivatives 18g and 18h showed potent and broad-spectrum antitumor activities against HL60 (IC50 of 10.43, 8.99 µM, respectively), MCF-7 (IC50 of 11.7 and 12.4 µM, respectively), and MDA-MB-231 (IC50 of 4.07 and 7.18 µM, respectively). Compound 18c exhibited strong antitumor activity against HL60 and MDA-MB-231 cell lines with IC50 values of 8.43 and 12.54 µM, respectively, and moderate antitumor activity against MCF-7 cell lines with an IC50 value of 16.20 µM. Compounds 18c, 18g, and 18h remarkably inhibited VEGFR2 kinase (IC50 = 0.218, 0.168, and 0.135 µM, respectively) compared with the reference drug sorafenib (IC50 = 0.041 µM). Compounds 18g and 18h effectively inhibited HER2 kinase (IC50 = 0.496 and 0.253 µM, respectively) compared with erlotinib (IC50 = 0.085 µM). Compound 18h inhibited EGFR kinase (IC50 = 0.574 µM) with a potency comparable with that of the reference drug erlotinib (IC50 = 0.105 µM). Pyrazolines 18c, 18f, and 18h arrested the S/G2 phase of the cell cycle in HL-60 cells. In addition, derivatives 18c, 18f, and 18h revealed lower Bcl-2 protein expression anti-apoptotic levels and higher Bax, caspase-3, and caspase-9 expression levels. Molecular docking studies of derivative 18h into the binding sites of EGFR, HER2, and VEGFR2 kinases explored the interaction mode of these pyrazoline derivatives and their structural requirements for antitumor activity.

2.
Foods ; 13(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38998465

ABSTRACT

Intermittent fasting (IF) has been indicated as a valuable alternative to the classical caloric restriction dietary regimen for lowering body weight and preventing obesity-related complications, such as metabolic syndrome and type II diabetes. However, is it effective? In this review article, we analyzed over 50 clinical studies in which IF, conducted by alternate day fasting (ADF) or time-restricted feeding (TRF), was compared with the caloric restriction approach. We evaluated the different roles of IF in treating and preventing human disorders such as metabolic syndrome, type II diabetes, and some types of cancer, as well as the usefulness of IF in reducing body weight and cardiovascular risk factors such as hypertension. Furthermore, we explored the cellular pathways targeted by IF to exert their beneficial effects by activating effector proteins that modulate cell functions and resistance to oxidative stress. In contrast, we investigated concerns regarding human health related to the adoption of IF dietary regimens, highlighting the profound debate surrounding weight loss regimens. We examined and compared several clinical trials to formulate an updated concept regarding IF and its therapeutic potential.

3.
J Med Chem ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38961727

ABSTRACT

Inherited retinal diseases, which include retinitis pigmentosa, are a family of genetic disorders characterized by gradual rod-cone degeneration and vision loss, without effective pharmacological treatments. Experimental approaches aim to delay disease progression, supporting cones' survival, crucial for human vision. Histone deacetylases (HDACs) mediate the activation of epigenetic and nonepigenetic pathways that modulate cone degeneration in RP mouse models. We developed new HDAC inhibitors (5a-p), typified by a tetrahydro-γ-carboline scaffold, characterized by high HDAC6 inhibition potency with balanced physicochemical properties for in vivo studies. Compound 5d (repistat, IC50 HDAC6 = 6.32 nM) increased the levels of acetylated α-tubulin compared to histone H3 in ARPE-19 and 661W cells. 5d promoted vision rescue in the atp6v0e1-/- zebrafish model of photoreceptor dysfunction. A single intravitreal injection of 5d in the rd10 mouse model of RP supported morphological and functional preservation of cone cells and maintenance of the retinal pigment epithelium array.

4.
Biomolecules ; 14(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38927014

ABSTRACT

Candidiasis is considered an emerging public health concern because of the occurrence of drug-resistant Candida strains and the lack of an available structurally diverse antifungal drug armamentarium. The indole alkaloid globospiramine from the anticandidal Philippine medicinal plant Voacanga globosa exhibits a variety of biological activities; however, its antifungal properties remain to be explored. In this study, we report the in vitro anticandidal activities of globospiramine against two clinically relevant Candida species (C. albicans and C. tropicalis) and the exploration of its possible target proteins using in silico methods. Thus, the colony-forming unit (CFU) viability assay revealed time- and concentration-dependent anticandidal effects of the alkaloid along with a decrease in the number of viable CFUs by almost 50% at 60 min after treatment. The results of the MIC and MFC assays indicated inhibitory and fungicidal effects of globospiramine against C. albicans (MIC = 8 µg/mL; MFC = 8 µg/mL) and potential fungistatic effects against C. tropicalis at lower concentrations (MIC = 4 µg/mL; MFC > 64 µg/mL). The FAM-FLICA poly-caspase assay showed metacaspase activation in C. albicans cells at concentrations of 16 and 8 µg/mL, which agreed well with the MIC and MFC values. Molecular docking and molecular dynamics simulation experiments suggested globospiramine to bind strongly with 1,3-ß-glucan synthase and Als3 adhesin-enzymes indirectly involved in apoptosis-driven candidal inhibition.


Subject(s)
Antifungal Agents , Apoptosis , Candida albicans , Microbial Sensitivity Tests , Molecular Docking Simulation , Candida albicans/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Apoptosis/drug effects , Indole Alkaloids/pharmacology , Indole Alkaloids/chemistry , Molecular Dynamics Simulation
5.
Cells ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38727308

ABSTRACT

Bisindole alkaloids are a source of inspiration for the design and discovery of new-generation anticancer agents. In this study, we investigated the cytotoxic and antiproliferative activities of three spirobisindole alkaloids from the traditional anticancer Philippine medicinal plant Voacanga globosa, along with their mechanisms of action. Thus, the alkaloids globospiramine (1), deoxyvobtusine (2), and vobtusine lactone (3) showed in vitro cytotoxicity and antiproliferative activities against the tested cell lines (L929, KB3.1, A431, MCF-7, A549, PC-3, and SKOV-3) using MTT and CellTiter-Blue assays. Globospiramine (1) was also screened against a panel of breast cancer cell lines using the sulforhodamine B (SRB) assay and showed moderate cytotoxicity. It also promoted the activation of apoptotic effector caspases 3 and 7 using Caspase-Glo 3/7 and CellEvent-3/7 apoptosis assays. Increased expressions of cleaved caspase 3 and PARP in A549 cells treated with 1 were also observed. Apoptotic activity was also confirmed when globospiramine (1) failed to promote the rapid loss of membrane integrity according to the HeLa cell membrane permeability assay. Network pharmacology analysis, molecular docking, and molecular dynamics simulations identified MAPK14 (p38α), a pharmacological target leading to cancer cell apoptosis, as a putative target. Low toxicity risks and favorable drug-likeness were also predicted for 1. Overall, our study demonstrated the anticancer potentials and apoptotic mechanisms of globospiramine (1), validating the traditional medicinal use of Voacanga globosa.


Subject(s)
Apoptosis , Cell Proliferation , Indole Alkaloids , Mitogen-Activated Protein Kinase 14 , Molecular Docking Simulation , Humans , A549 Cells , Apoptosis/drug effects , Caspases/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Indole Alkaloids/pharmacology , Indole Alkaloids/chemistry , Molecular Dynamics Simulation , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Mitogen-Activated Protein Kinase 14/metabolism
6.
Biomed Pharmacother ; 174: 116537, 2024 May.
Article in English | MEDLINE | ID: mdl-38579402

ABSTRACT

Chronic Lymphocytic Leukemia (CLL) patients have a defective expression of the proapoptotic protein p66Shc and of its transcriptional factor STAT4, which evoke molecular abnormalities, impairing apoptosis and worsening disease prognosis and severity. p66Shc expression is epigenetically controlled and transcriptionally modulated by STAT4; epigenetic modifiers are deregulated in CLL cells and specific histone deacetylases (HDACs) like HDAC1, are overexpressed. Reactivation of STAT4/p66Shc expression may represent an attractive and challenging strategy to reverse CLL apoptosis defects. New selective class I HDAC inhibitors (HDACis, 6a-g) were developed with increased potency over existing agents and preferentially interfering with the CLL-relevant isoform HDAC1, to unveil the role of class I HDACs in the upregulation of STAT4 expression, which upregulates p66Shc expression and hence normalizes CLL cell apoptosis. 6c (chlopynostat) was identified as a potent HDAC1i with a superior profile over entinostat. 6c induces marked apoptosis of CLL cells compared with SAHA, which was associated with an upregulation of STAT4/p66Shc protein expression. The role of HDAC1, but not HDAC3, in the epigenetic upregulation of STAT4/p66Shc was demonstrated for the first time in CLL cells and was validated in siRNA-induced HDAC1/HDAC3 knock-down EBV-B cells. To sum up, HDAC1 inhibition is necessary to reactivate STAT4/p66Shc expression in patients with CLL. 6c is one of the most potent HDAC1is known to date and represents a novel pharmacological tool for reversing the impairment of the STAT4/p66Shc apoptotic machinery.


Subject(s)
Apoptosis , B-Lymphocytes , Histone Deacetylase Inhibitors , Leukemia, Lymphocytic, Chronic, B-Cell , STAT4 Transcription Factor , Src Homology 2 Domain-Containing, Transforming Protein 1 , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Apoptosis/drug effects , Histone Deacetylase Inhibitors/pharmacology , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism , Src Homology 2 Domain-Containing, Transforming Protein 1/genetics , STAT4 Transcription Factor/metabolism , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , Histone Deacetylase 1/metabolism , Histone Deacetylase 1/antagonists & inhibitors , Benzamides/pharmacology , Male , Aged , Female , Middle Aged
7.
Article in English | MEDLINE | ID: mdl-38584562

ABSTRACT

BACKGROUND: Plant species of the genus Daphne clasps a historical background with a potential source of bioactive phytochemicals such as flavonoids and daphnodorins. These compounds manifest a significant chemotaxonomic value in drug discovery. Their flair comprehensive pharmacological, phytochemical, biological, catalytic, and clinical utilities make them exclusively unique. This study was conducted to investigate the optimization and structure-based virtual screening of these peculiar analogs. The majority of the active constituents of medicines are obtained from natural products. Previously, before the invention of virtual screening methods or techniques, almost 80% of drugs were obtained from natural resources. Comparing reported data to drug discovery from 1981 to 2007 signifies that half of the FDA-approved drugs are obtained from natural resources. It has been reported that structures of natural products that have particularities of structural diversity, biochemical specification, and molecular properties make them suitable products for drug discovery. These products basically have unique chiral centers which increase their structural complexity than the synthesized drugs. METHOD: This work aimed to probe the use of daphnodorins analogs for the first time as antidiabetic inhibitors based on significant features and to determine the potential of daphnodorin analogs as antidiabetic inhibitors through computational analysis and structure-based virtual screening. A dataset of 38 compounds was selected from different databases, including PubChem and ZINC, for computational analysis, and optimized compounds were docked against various co-crystallized structures of inhibitors, antagonists, and receptors which were downloaded from PDB by using AutoDock Vina (by employing Broyden-Fletcher-Goldfarb-Shanno method), Discovery studio visualizer 2020, PYMOL (Schrodinger). Docking results were further validated by Molecular dynamic simulation and MM-GBSA calculation. Quantitative structure-activity relationship (QSAR) was reported by using Gaussian 09W by intimating Density Functional Theory (DFT). Using this combination of multi-approach computational strategy, 14 compounds were selected as potential exclusive lead compounds, which were analyzed through ADMET studies to pin down their druglike properties and toxicity. RESULT: At significant phases of drug design approaches regular use of molecular docking has helped to promote the separation of important representatives from 38 pharmaceutically active compounds by setting a threshold docking score of -9.0 kcal/mol which was used for their exposition. Subsequently, by employing a threshold it was recognized that 14 compounds proclaimed this threshold for antidiabetic activity. Further, molecular dynamic simulation, MM-GBSA, ADMET, and DFT results screened out daphnegiralin B4 (36) as a potential lead compound for developing antidiabetic agents. CONCLUSION: Our analysis took us to the conclusion that daphnegiralin B4 (36) among all ligands comes out to be a lead compound having drug-like properties among 38 ligands being non-carcinogenic and non-cytotoxic which would benefit the medical community by providing significant drugs against diabetes. Pragmatic laboratory investigations identified a new precursor to open new doors for new drug discovery.

8.
Eur J Med Chem ; 270: 116355, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38555855

ABSTRACT

By controlling several antioxidant and detoxifying genes at the transcriptional level, including NAD(P)H quinone oxidoreductase 1 (NQO1), multidrug resistance-associated proteins (MRPs), UDP-glucuronosyltransferase (UGT), glutamate-cysteine ligase catalytic (GCLC) and modifier (GCLM) subunits, glutathione S-transferase (GST), sulfiredoxin1 (SRXN1), and heme-oxygenase-1 (HMOX1), the KEAP1/NRF2 pathway plays a crucial role in the oxidative stress response. Accordingly, the discovery of modulators of this pathway, activating cellular signaling through NRF2, and targeting the antioxidant response element (ARE) genes is pivotal for the development of effective antioxidant agents. In this context, natural products could represent promising drug candidates for supplementation to provide antioxidant capacity to human cells. In recent decades, by coupling in silico and experimental methods, several natural products have been characterized to exert antioxidant effects by targeting the KEAP1/NRF2 pathway. In this review article, we analyze several natural products that were investigated experimentally and in silico for their ability to modulate KEAP1/NRF2 by non-covalent and covalent mechanisms. These latter represent the two main sections of this article. For each class of inhibitors, we reviewed their antioxidant effects and potential therapeutic applications, and where possible, we analyzed the structure-activity relationship (SAR). Moreover, the main computational techniques used for the most promising identified compounds are detailed in this survey, providing an updated view on the development of natural products as antioxidant agents.


Subject(s)
Antioxidants , NF-E2-Related Factor 2 , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Oxidative Stress , Antioxidant Response Elements
9.
J Biomol Struct Dyn ; : 1-22, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38299565

ABSTRACT

Breast cancer is a major issue of investigation in drug discovery due to its rising frequency and global dominance. Plants are significant natural sources for the development of novel medications and therapies. Medicinal mushrooms have many biological response modifiers and are used for the treatment of many physical illnesses. In this research, a database of 89 macro-molecules with anti-breast cancer activity, which were previously isolated from the mushrooms in literature, has been selected for the three-dimensional quantitative structure-activity relationships (3D-QSAR) studies. The 3D-QSAR model was necessarily used in Pharmacopoeia virtual evaluation of the database to develop novel MCF-7 inhibitors. With the known potential targets of breast cancer, the docking studies were achieved. Using molecular dynamics simulations, the targets' stability with the best-chosen natural product molecule was found. Furthermore, the absorption, distribution, metabolism, excretion, and toxicity of three compounds, resulting after the docking study, were predicted. The compound C1 (Pseudonocardian A) showed the features of effective compounds because it has bioavailability from different coral species and is toxicity-free for the prevention of many dermatological illnesses. C1 is chemically active and possesses charge transfer inside the monomer, as seen by the band gaps of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) electrons. The reactivity descriptors ionization potential, electron affinity, chemical potential (µ), hardness (η), softness (S), electronegativity (χ), and electrophilicity index (ω) have been estimated using the energies of frontier molecular orbitals (HOMO-LUMO). Additionally, molecular electrostatic potential maps were created to show that the C1 is reactive.Communicated by Ramaswamy H. Sarma.


The selected compounds from the mushroom were evaluated as potential breast cancer MCF-7 cell line inhibitor.Ligand-based 3D-QSAR study to analyze the structurally diverse compounds with experimentally reported IC50.Pharmacophore-based virtual screening of compounds.Molecular docking analysis pointed out the vital interaction of the hit with the protein's amino acids.Absorption, distribution, metabolism, and excretion (ADME) and toxicity properties of the lead compounds were examined.

10.
ACS Omega ; 9(2): 2161-2182, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38250382

ABSTRACT

BACKGROUND: Structure-activity relationship (SAR) is considered to be an effective in silico approach when discovering potential antagonists for breast cancer due to gene mutation. Major challenges are faced by conventional SAR in predicting novel antagonists due to the discovery of diverse antagonistic compounds. Methodologyand Results: In predicting breast cancer antagonists, a multistep screening of phytochemicals isolated from the seeds of the Citrus sinensis plant was applied using feasible complementary methodologies. A three-dimensional quantitative structure-activity relationship (3D-QSAR) model was developed through the Flare project, in which conformational analysis, pharmacophore generation, and compound alignment were done. Ten hit compounds were obtained through the development of the 3D-QSAR model. For exploring the mechanism of action of active compounds against cocrystal inhibitors, molecular docking analysis was done through Molegro software (MVD) to identify lead compounds. Three new proteins, namely, 1T15, 3EU7, and 1T29, displayed the best Moldock scores. The quality of the docking study was assessed by a molecular dynamics simulation. Based on binding affinities to the receptor in the docking studies, three lead compounds (stigmasterol P8, epoxybergamottin P28, and nobiletin P29) were obtained, and they passed through absorption, distribution, metabolism, and excretion (ADME) studies via the SwissADME online service, which proved that P28 and P29 were the most active allosteric inhibitors with the lowest toxicity level against breast cancer. Then, density functional theory (DFT) studies were performed to measure the active compound's reactivity, hardness, and softness with the help of Gaussian 09 software. CONCLUSIONS: This multistep screening of phytochemicals revealed high-reliability antagonists of breast cancer by 3D-QSAR using flare, docking analysis, and DFT studies. The present study helps in providing a proper guideline for the development of novel inhibitors of BRCA1 and BRCA2.

11.
RSC Adv ; 14(5): 2918-2928, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38239446

ABSTRACT

Retinoic acid receptor-related orphan receptor γt (RORγt) is a nuclear receptor found in various tissues that plays a crucial role in the differentiation and proliferation of T helper 17 (Th17) cells, as well as in their generation of the pro-inflammatory cytokine IL-17A. RORγt represents a promising therapeutic target for autoimmune diseases, metabolic disorders, and multiple tumors. Despite extensive research efforts focused on the development of small molecule RORγt modulators, no drug candidates have advanced to phase 3 clinical trials owing to a lack of efficacy or safety margin. This outcome highlights the unmet need to optimize small molecule drug candidates targeting RORγt to develop effective therapies for autoimmune and inflammatory diseases. In this study, we synthesized and evaluated 3-oxo-lithocholic acid amidates as a new class of RORγt modulators. Our evaluation entailed biophysical screening, cellular screening in different platforms, molecular docking, and in vitro pharmacokinetic profiling. The top compound from our study (3-oxo-lithocholic acid amidate, A2) binds to RORγt at an equilibrium dissociation constant (KD) of 16.5 ± 1.34 nM based on microscale thermophoresis (MST). Assessment of the efficacy of A2 in the cellular RORγt reporter luciferase assay revealed a half-maximal inhibitory concentration (IC50) value of 225 ± 10.4 nM. Unlike 3-oxo-lithocholic acid, A2 demonstrated the ability to reduce the IL-17A mRNA expression levels in EL4 cells with RORγt expression using quantitative reverse transcriptase PCR (RT-PCR). Validation of the desirable physicochemical properties and stability of A2 sets the stage for the preclinical evaluation of this new class of RORγt modulators in animal models of autoimmune diseases.

12.
J Med Chem ; 67(3): 1758-1782, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38241614

ABSTRACT

New potent, selective monoacylglycerol lipase (MAGL) inhibitors based on the azetidin-2-one scaffold ((±)-5a-v, (±)-6a-j, and (±)-7a-d) were developed as irreversible ligands, as demonstrated by enzymatic and crystallographic studies for (±)-5d, (±)-5l, and (±)-5r. X-ray analyses combined with extensive computational studies allowed us to clarify the binding mode of the compounds. 5v was identified as selective for MAGL when compared with other serine hydrolases. Solubility, in vitro metabolic stability, cytotoxicity, and absence of mutagenicity were determined for selected analogues. The most promising compounds ((±)-5c, (±)-5d, and (±)-5v) were used for in vivo studies in mice, showing a decrease in MAGL activity and increased 2-arachidonoyl-sn-glycerol levels in forebrain tissue. In particular, 5v is characterized by a high eudysmic ratio and (3R,4S)-5v is one of the most potent irreversible inhibitors of h/mMAGL identified thus far. These results suggest that the new MAGL inhibitors have therapeutic potential for different central and peripheral pathologies.


Subject(s)
Enzyme Inhibitors , Monoacylglycerol Lipases , Mice , Animals , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Monoglycerides , Ligands
13.
Viruses ; 15(12)2023 11 22.
Article in English | MEDLINE | ID: mdl-38140532

ABSTRACT

Since the emergence of SARS-CoV-2, many genetic variations within its genome have been identified, but only a few mutations have been found in nonstructural proteins (NSPs). Among this class of viral proteins, NSP3 is a multidomain protein with 16 different domains, and its largest domain is known as the macrodomain or Mac1 domain. In this study, we present a virtual screening campaign in which we computationally evaluated the NCI anticancer library against the NSP3 Mac1 domain, using Molegro Virtual Docker. The top hits with the best MolDock and Re-Rank scores were selected. The physicochemical analysis and drug-like potential of the top hits were analyzed using the SwissADME data server. The binding stability and affinity of the top NSC compounds against the NSP3 Mac1 domain were analyzed using molecular dynamics (MD) simulation, using Desmond software, and their interaction energies were analyzed using the MM/GBSA method. In particular, by applying subsequent computational filters, we identified 10 compounds as possible NSP3 Mac1 domain inhibitors. Among them, after the assessment of binding energies (ΔGbind) on the whole MD trajectories, we identified the four most interesting compounds that acted as strong binders of the NSP3 Mac1 domain (NSC-358078, NSC-287067, NSC-123472, and NSC-142843), and, remarkably, it could be further characterized for developing innovative antivirals against SARS-CoV-2.


Subject(s)
COVID-19 , Coronavirus Protease Inhibitors , Molecular Dynamics Simulation , Humans , COVID-19/prevention & control , SARS-CoV-2/chemistry , Coronavirus Protease Inhibitors/chemistry , Coronavirus Protease Inhibitors/pharmacology , COVID-19 Drug Treatment/methods
14.
Front Chem ; 11: 1251529, 2023.
Article in English | MEDLINE | ID: mdl-37822772

ABSTRACT

Severe acute respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) is the etiological virus of Coronavirus Disease 2019 (COVID-19) which has been a public health concern due to its high morbidity and high mortality. Hence, the search for drugs that incapacitate the virus via inhibition of vital proteins in its life cycle is ongoing due to the paucity of drugs in clinical use against the virus. Consequently, this study was aimed at evaluating the potentials of natural phenolics against the Main protease (Mpro) and the receptor binding domain (RBD) using molecular modeling techniques including molecular docking, molecular dynamics (MD) simulation, and density functional theory (DFT) calculations. To this end, thirty-five naturally occurring phenolics were identified and subjected to molecular docking simulation against the proteins. The results showed the compounds including rosmarinic acid, cynarine, and chlorogenic acid among many others possessed high binding affinities for both proteins as evident from their docking scores, with some possessing lower docking scores compared to the standard compound (Remdesivir). Further subjection of the hit compounds to drug-likeness, pharmacokinetics, and toxicity profiling revealed chlorogenic acid, rosmarinic acid, and chicoric acid as the compounds with desirable profiles and toxicity properties, while the study of their electronic properties via density functional theory calculations revealed rosmarinic acid as the most reactive and least stable among the sets of lead compounds that were identified in the study. Molecular dynamics simulation of the complexes formed after docking revealed the stability of the complexes. Ultimately, further experimental procedures are needed to validate the findings of this study.

15.
Front Mol Biosci ; 10: 1252178, 2023.
Article in English | MEDLINE | ID: mdl-37886033

ABSTRACT

Alzheimer's disease (AD) is more commonly found in women than in men as the risk increases with age. Phytochemicals are screened in silico from Punica granatum peels for their antioxidant activity to be utilized for Alzheimer's disease. Alzheimer's disease is inhibited by the hormone estrogen, which protects the brain from the bad effects of amyloid beta and acetylcholine (ACh), and is important for memory processing. For the purpose, a library of about 1,000 compounds from P. granatum were prepared and studied by applying integrated computational calculations like 3D-QSAR, molecular docking, MD simulation, ADMET, and density functional theory (DFT). The 3D-QSAR model screened the active compounds B25, B29, B35, B40, B45, B46, B48, B61, and B66 by the field points and activity atlas model from the prepared library. At the molecular level, docking was performed on active compounds for leading hit compounds such as B25 and B35 that displayed a high MolDock score, efficacy, and compatibility with drug delivery against the antioxidant activity. Optimization of the structure and chemical reactivity parameter of the hit compound was calculated by DFT. Moreover, ADMET prediction was evaluated to check the bioavailability and toxicity of the hit compound. Hesperidin (B25) is found to be a hit compound after the whole study and can be synthesized for potent drug discovery in the future.

16.
Viruses ; 15(10)2023 10 02.
Article in English | MEDLINE | ID: mdl-37896819

ABSTRACT

Representing more than 20% of all deaths occurring worldwide, infectious diseases remain one of the main factors in both human and animal morbidity and mortality [...].


Subject(s)
Antiviral Agents , Communicable Diseases , Animals , Humans , Antiviral Agents/pharmacology
17.
Molecules ; 28(18)2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37764311

ABSTRACT

Pseudomonas aeruginosa (PA), one of the ESKAPE pathogens, is an opportunistic Gram-negative bacterium responsible for nosocomial infections in humans but also for infections in patients affected by AIDS, cancer, or cystic fibrosis (CF). Treatment of PA infections in CF patients is a global healthcare problem due to the ability of PA to gain antibiotic tolerance through biofilm formation. Anti-virulence compounds represent a promising approach as adjuvant therapy, which could reduce or eliminate the pathogenicity of PA without impacting its growth. Pyocyanin is one of the virulence factors whose production is modulated by the Pseudomonas quinolone signal (PQS) through its receptor PqsR. Different PqsR modulators have been synthesized over the years, highlighting this new powerful therapeutic strategy. Based on the promising structure of quinazolin-4(3H)-one, we developed compounds 7a-d, 8a,b, 9, 10, and 11a-f able to reduce biofilm formation and the production of virulence factors (pyocyanin and pyoverdine) at 50 µM in two PA strains responsible for CF acute and chronic infections. The developed compounds did not reduce the cell viability of IB3-1 bronchial CF cells, and computational studies confirmed the potential ability of novel compounds to act as potential Pqs system modulators.

18.
Int J Mol Sci ; 24(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37446064

ABSTRACT

This review article offers an outlook on the use of opioids as therapeutics for treating several diseases, including cancer and non-cancer pain, and focuses the analysis on the opportunity to target opioid receptors for treating opioid use disorder (OUD), drug withdrawal, and addiction. Unfortunately, as has been well established, the use of opioids presents a plethora of side effects, such as tolerance and physical and physiological dependence. Accordingly, considering the great pharmacological potential in targeting opioid receptors, the identification of opioid receptor ligands devoid of most of the adverse effects exhibited by current therapeutic agents is highly necessary. To this end, herein, we analyze some interesting molecules that could potentially be useful for treating OUD, with an in-depth analysis regarding in vivo studies and clinical trials.


Subject(s)
Behavior, Addictive , Drug-Related Side Effects and Adverse Reactions , Opioid-Related Disorders , Substance Withdrawal Syndrome , Humans , Analgesics, Opioid/adverse effects , Receptors, Opioid , Opioid-Related Disorders/drug therapy , Substance Withdrawal Syndrome/drug therapy , Drug-Related Side Effects and Adverse Reactions/drug therapy
19.
Molecules ; 28(12)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37375219

ABSTRACT

Due to the limited availability of antifungal drugs, their relevant side effects and considering the insurgence of drug-resistant strains, novel antifungal agents are urgently needed. To identify such agents, we have developed an integrated computational and biological screening platform. We have considered a promising drug target in antifungal drug discovery (exo-1,3-ß-glucanase) and a phytochemical library composed of bioactive natural products was used. These products were computationally screened against the selected target using molecular docking and molecular dynamics techniques along with the evaluation of drug-like profile. We selected sesamin as the most promising phytochemical endowed with a potential antifungal profile and satisfactory drug-like properties. Sesamin was submitted to a preliminary biological evaluation to test its capability to inhibit the growth of several Candida species by calculating the MIC/MFC and conducting synergistic experiments with the marketed drug fluconazole. Following the screening protocol, we identified sesamin as a potential exo-1,3-ß-glucanase inhibitor, with relevant potency in inhibiting the growth of Candida species in a dose-dependent manner (MIC and MFC of 16 and 32 µg/mL, respectively). Furthermore, the combination of sesamin with fluconazole highlighted relevant synergistic effects. The described screening protocol revealed the natural product sesamin as a potential novel antifungal agent, showing an interesting predicted pharmacological profile, paving the way to the development of innovative therapeutics against fungal infections. Notably, our screening protocol can be helpful in antifungal drug discovery.


Subject(s)
Antifungal Agents , Sesamum , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Fluconazole/pharmacology , Molecular Docking Simulation , Glucan 1,3-beta-Glucosidase/pharmacology , Microbial Sensitivity Tests , Candida , Phytochemicals/pharmacology , Drug Resistance, Fungal
20.
Int J Mol Sci ; 24(8)2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37108741

ABSTRACT

In this paper, we present the development of a computer-based repurposing approach to identify FDA-approved drugs that are potentially able to interfere with irisin dimerization. It has been established that altered levels of irisin dimers are a pure hallmark of lipodystrophy (LD) syndromes. Accordingly, the identification of compounds capable of slowing down or precluding the irisin dimers' formation could represent a valuable therapeutic strategy in LD. Combining several computational techniques, we identified five FDA-approved drugs with satisfactory computational scores (iohexol, XP score = -7.70 kcal/mol, SP score = -5.5 kcal/mol, ΔGbind = -61.47 kcal/mol, ΔGbind (average) = -60.71 kcal/mol; paromomycin, XP score = -7.23 kcal/mol, SP score = -6.18 kcal/mol, ΔGbind = -50.14 kcal/mol, ΔGbind (average) = -49.13 kcal/mol; zoledronate, XP score = -6.33 kcal/mol, SP score = -5.53 kcal/mol, ΔGbind = -32.38 kcal/mol, ΔGbind (average) = -29.42 kcal/mol; setmelanotide, XP score = -6.10 kcal/mol, SP score = -7.24 kcal/mol, ΔGbind = -56.87 kcal/mol, ΔGbind (average) = -62.41 kcal/mol; and theophylline, XP score = -5.17 kcal/mol, SP score = -5.55 kcal/mol, ΔGbind = -33.25 kcal/mol, ΔGbind (average) = -35.29 kcal/mol) that are potentially able to disrupt the dimerization of irisin. For this reason, they deserve further investigation to characterize them as irisin disruptors. Remarkably, the identification of drugs targeting this process can offer novel therapeutic opportunities for the treatment of LD. Furthermore, the identified drugs could provide a starting point for a repositioning approach, synthesizing novel analogs with improved efficacy and selectivity against the irisin dimerization process.


Subject(s)
Fibronectins , Lipodystrophy , Humans , Molecular Docking Simulation , Dimerization , Drug Repositioning , Syndrome , Molecular Dynamics Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...