Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 86(23)2020 11 10.
Article in English | MEDLINE | ID: mdl-32978135

ABSTRACT

Oyster and seawater samples were collected from five sites in the Chesapeake Bay, MD, and three sites in the Delaware Bay, DE, from May to October 2016 and 2017. Abundances and detection frequencies for total and pathogenic Vibrio parahaemolyticus and Vibrio vulnificus were compared using the standard most-probable-number-PCR (MPN-PCR) assay and a direct-plating (DP) method on CHROMagar Vibrio for total (tlh+ ) and pathogenic (tdh+ and trh+ ) V. parahaemolyticus genes and total (vvhA) and pathogenic (vcgC) V. vulnificus genes. The colony overlay procedure for peptidases (COPP) assay was evaluated for total Vibrionaceae DP had high false-negative rates (14 to 77%) for most PCR targets and was deemed unsatisfactory. Logistic regression models of the COPP assay showed high concordances with MPN-PCR for tdh+ and trh+V. parahaemolyticus and vvhA+V. vulnificus in oysters (85.7 to 90.9%) and seawater (81.1 to 92.7%) when seawater temperature and salinity were factored into the model, suggesting that the COPP assay could potentially serve as a more rapid method to detect vibrios in oysters and seawater. Differences in total Vibrionaceae and pathogenic Vibrio abundances between state sampling sites over different collection years were contrasted for oysters and seawater by MPN-PCR. Abundances of tdh+ and trh+V. parahaemolyticus were ∼8-fold higher in Delaware oysters than in Maryland oysters, whereas abundances of vcgC+V. vulnificus were nearly identical. For Delaware oysters, 93.5% were both tdh+ and trh+, compared to only 19.2% in Maryland. These results indicate that pathogenic V. parahaemolyticus was more prevalent in the Delaware Bay than in the Chesapeake Bay.IMPORTANCE While V. parahaemolyticus and V. vulnificus cause shellfish-associated morbidity and mortality among shellfish consumers, current regulatory assays for vibrios are complex, time-consuming, labor-intensive, and relatively expensive. In this study, the rapid, simple, and inexpensive COPP assay was identified as a possible alternative to MPN-PCR for shellfish monitoring. This paper shows differences in total Vibrionaceae and pathogenic vibrios found in seawater and oysters from the commercially important Delaware and Chesapeake Bays. Vibrio parahaemolyticus isolates from the Delaware Bay were more likely to contain commonly recognized pathogenicity genes than those from the Chesapeake Bay.


Subject(s)
Bays/microbiology , Ostreidae/microbiology , Seawater/microbiology , Vibrio parahaemolyticus/isolation & purification , Vibrio vulnificus/isolation & purification , Animals , Colony Count, Microbial , Delaware , Geography , Maryland , Seasons , Vibrio parahaemolyticus/classification , Vibrio vulnificus/classification
2.
J Food Sci ; 82(2): 484-491, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28099766

ABSTRACT

Cases of Vibrio infections in the United States have tripled from 1996 to 2009 and these infections are most often associated with the consumption of seafood, particularly oysters (Crassostrea virginica). Information is needed on how to reduce numbers of Vibrio parahaemolyticus and Vibrio vulnificus in bi-valve molluscan shellfish (for example, oysters). The purpose of this study was to evaluate the effectiveness of high salinity relaying or treatment in recirculating aquaculture systems (RASs) as methods to reduce the abundance of V. parahaemolyticus and V. vulnificus in oysters. For relaying field trials, oysters were collected from approved harvest waters, temperature abused outside under a tarp for 4 h, and then transferred to high (29 to 33 ppt.) and moderate (12 to 19 ppt.) salinities. For RAS treatment trial, oysters were transferred to 32 to 34 ppt. salinity at 15 °C. After 7, 14, 21, and in some instances 28 d, oysters were collected and analyzed for V. parahaemolyticus and V. vulnificus levels using multiplex real-time PCR. Initial levels of V. parahaemolyticus and V. vulnificus ranged from 3.70 to 5.64 log10 MPN/g, and were reduced by 2 to 5 logs after 21 to 28 d in high salinity water (29 to 34 ppt.). Oyster mortalities averaged 4% or less, and did not exceed 7%. Relaying of oysters to high salinity field sites or transfer to high salinity RAS tanks was more effective in reducing V. vulnificus compared with V. parahaemolyticus. These results suggest that high salinity relaying of oysters is more effective in reducing V. vulnificus than V. parahaemolyticus in the oyster species used in this study.


Subject(s)
Crassostrea/microbiology , Food Analysis/methods , Food Contamination/prevention & control , Salinity , Vibrio parahaemolyticus/pathogenicity , Vibrio vulnificus/pathogenicity , Animals , Aquaculture , Bays , Colony Count, Microbial , Geography , Maryland , Ostreidae/microbiology , Seafood/analysis , Seafood/microbiology , Shellfish/analysis , Shellfish/microbiology , Temperature , Vibrio Infections , Virginia
3.
Front Microbiol ; 8: 2460, 2017.
Article in English | MEDLINE | ID: mdl-29375492

ABSTRACT

Vibrio parahaemolyticus is the leading cause of bacterial gastroenteritis associated with seafood consumption in the United States. Here we investigated the presence of virulence factors and genetic diversity of V. parahaemolyticus isolated from water, oyster, and sediment samples from the Chesapeake Bay, Maryland. Of more than 2,350 presumptive Vibrio collected, more than half were confirmed through PCR as V. parahaemolyticus, with 10 encoding both tdh and trh and 6 encoding only trh. Potentially pathogenic V. parahaemolyticus were then serotyped with O1:KUT and O3:KUT predominant. Furthermore, pulsed-field gel electrophoresis was performed and the constructed dendrogram displayed high diversity, as did results from multiple-locus VNTR analysis. Vibrio parahaemolyticus was readily isolated from Chesapeake Bay waters but was less frequently isolated from oyster and sediment samples collected during this study. Potentially pathogenic V. parahaemolyticus was isolated in fewer numbers and the isolates displayed expansive diversity. Although characteristics of the pathogenic V. parahaemolyticus were highly variable and the percent of pathogenic V. parahaemolyticus detected was low, it is important to note that, pathogenic V. parahaemolyticus are present in the Chesapeake Bay, warranting seafood monitoring to minimize risk of disease for the public, and to reduce the economic burden of V. parahaemolyticus related illness.

4.
Int J Food Microbiol ; 161(1): 1-6, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23246606

ABSTRACT

Information is limited about the growth and survival of naturally-occurring Vibrio parahaemolyticus in live oysters under commercially relevant storage conditions harvested from different regions and in different oyster species. This study produced a predictive model for the growth of naturally-occurring V. parahaemolyticus in live Eastern oysters (Crassostrea virginica) harvested from the Chesapeake Bay, MD, USA and stored at 5-30 °C until oysters gapped. The model was validated with model-independent data collected from Eastern oysters harvested from the Chesapeake Bay and Mobile Bay, AL, USA and Asian (C. ariakensis) oysters from the Chesapeake Bay, VA, USA. The effect of harvest season, region and water condition on growth rate (GR) was also tested. At each time interval, two samples consisting of six oysters each were analyzed by a direct-plating method for total V. parahaemolyticus. The Baranyi D-model was fitted to the total V. parahaemolyticus growth and survival data. A secondary model was produced using the square root model. V. parahaemolyticus slowly inactivated at 5 and 10 °C with average rates of -0.002 and -0.001 log cfu/h, respectively. The average GRs at 15, 20, 25, and 30 °C were 0.038, 0.082, 0.228, and 0.219 log cfu/h, respectively. The bias and accuracy factors of the secondary model for model-independent data were 1.36 and 1.46 for Eastern oysters from Mobile Bay and the Chesapeake Bay, respectively. V. parahaemolyticus GRs were markedly lower in Asian oysters. Harvest temperature, salinity, region and season had no effect on GRs. The observed GRs were less than those predicted by the U.S. Food and Drug Administration's V. parahaemolyticus quantitative risk assessment.


Subject(s)
Food Microbiology , Models, Biological , Ostreidae/microbiology , Vibrio parahaemolyticus/growth & development , Animals , Crassostrea/microbiology , Food Handling , Reproducibility of Results , Seasons , Temperature , Time Factors , United States
5.
Appl Environ Microbiol ; 78(6): 1675-81, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22247136

ABSTRACT

Postharvest growth of Vibrio vulnificus in oysters can increase risk of human infection. Unfortunately, limited information is available regarding V. vulnificus growth and survival patterns over a wide range of storage temperatures in oysters harvested from different estuaries and in different oyster species. In this study, we developed a predictive model for V. vulnificus growth in Eastern oysters (Crassostrea virginica) harvested from Chesapeake Bay, MD, over a temperature range of 5 to 30°C and then validated the model against V. vulnificus growth rates (GRs) in Eastern and Asian oysters (Crassostrea ariakensis) harvested from Mobile Bay, AL, and Chesapeake Bay, VA, respectively. In the model development studies, V. vulnificus was slowly inactivated at 5 and 10°C with average GRs of -0.0045 and -0.0043 log most probable number (MPN)/h, respectively. Estimated average growth rates at 15, 20, 25, and 30°C were 0.022, 0.042, 0.087, and 0.093 log MPN/h, respectively. With respect to Eastern oysters, bias (B(f)) and accuracy (A(f)) factors for model-dependent and -independent data were 1.02 and 1.25 and 1.67 and 1.98, respectively. For Asian oysters, B(f) and A(f) were 0.29 and 3.40. Residual variations in growth rate about the fitted model were not explained by season, region, water temperature, or salinity at harvest. Growth rate estimates for Chesapeake Bay and Mobile Bay oysters stored at 25 and 30°C showed relatively high variability and were lower than Food and Agricultural Organization (FAO)/WHO V. vulnificus quantitative risk assessment model predictions. The model provides an improved tool for designing and implementing food safety plans that minimize the risk associated with V. vulnificus in oysters.


Subject(s)
Crassostrea/microbiology , Food Microbiology , Models, Biological , Models, Statistical , Vibrio vulnificus/growth & development , Animals , Maryland , Microbial Viability , Seawater , Temperature , Time Factors
6.
Int J Food Microbiol ; 128(2): 354-61, 2008 Dec 10.
Article in English | MEDLINE | ID: mdl-18963158

ABSTRACT

The objectives of this study were to investigate the seasonal distribution of total and pathogenic Vibrio parahaemolyticus in the Chesapeake Bay oysters and waters, and to determine the degree of association between V. parahaemolyticus densities and selected environmental parameters. Oyster and water samples were collected monthly from three sites in Chesapeake Bay, Maryland from November 2004 through October 2005. During collection of samples, water temperature, salinity, turbidity, dissolved oxygen, pH, chlorophyll a, and fecal coliform levels in oysters were also determined. V. parahaemolyticus levels were enumerated by a quantitative direct-plating method followed by DNA colony hybridization; presence/absence was further determined by overnight broth enrichment followed by either standard colony isolation or real-time PCR. The thermolabile hemolysin (tlh) gene and thermostable direct hemolysin (tdh) gene were targeted for detection of total and pathogenic V. parahaemolyticus, respectively, for both direct plating and enrichment. The thermostable related hemolysin (trh) gene, which is a presumptive pathogenicity marker, was targeted only for the enrichment approach. By direct plating, colonies producing tlh signals were detected in 79% of oyster samples at densities ranging from 1.5x10(1) to 6.0x10(2) CFU/g. Pathogenic V. parahaemolyticus (tdh+) was detected in 3% (level was 10 CFU/g) of oyster samples while no V. parahaemolyticus was detected in water samples. By the enrichment approach with standard colony isolation, 67% of oyster and 55% of water samples (n=33) were positive for total V. parahaemolyticus, and all samples were negative for pathogenic V. parahaemolyticus. In contrast, enrichment followed by real-time PCR detected tlh, tdh and trh in 100%, 20% and 40% of oyster and 100%, 13% and 40% of water enrichments collected from June to October 2005, respectively. V. parahaemolyticus densities in oysters varied seasonally and were found to be positively correlated with water temperature, turbidity, and dissolved oxygen.


Subject(s)
Food Contamination/analysis , Hemolysin Proteins/genetics , Ostreidae/microbiology , Shellfish/microbiology , Vibrio parahaemolyticus/isolation & purification , Vibrio parahaemolyticus/pathogenicity , Water Microbiology , Animals , Bacterial Proteins , Bacterial Toxins/genetics , Colony Count, Microbial , Consumer Product Safety , DNA, Bacterial/analysis , Humans , Maryland , Seasons , Sensitivity and Specificity , Vibrio parahaemolyticus/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...