Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 111(2): 025901, 2013 Jul 12.
Article in English | MEDLINE | ID: mdl-23889420

ABSTRACT

We have calculated the thermal conductivities (κ) of cubic III-V boron compounds using a predictive first principles approach. Boron arsenide is found to have a remarkable room temperature κ over 2000 W m(-1) K(-1); this is comparable to those in diamond and graphite, which are the highest bulk values known. We trace this behavior in boron arsenide to an interplay of certain basic vibrational properties that lie outside of the conventional guidelines in searching for high κ materials, and to relatively weak phonon-isotope scattering. We also find that cubic boron nitride and boron antimonide will have high κ with isotopic purification. This work provides new insight into the nature of thermal transport at a quantitative level and predicts a new ultrahigh κ material of potential interest for passive cooling applications.

2.
Phys Rev Lett ; 109(9): 095901, 2012 Aug 31.
Article in English | MEDLINE | ID: mdl-23002858

ABSTRACT

We present atomistic first principles results for the lattice thermal conductivity of GaN and compare them to those for GaP, GaAs, and GaSb. In GaN we find a large increase to the thermal conductivity with isotopic enrichment, ~65% at room temperature. We show that both the high thermal conductivity and its enhancement with isotopic enrichment in GaN arise from the weak coupling of heat-carrying acoustic phonons with optic phonons. This weak scattering results from stiff atomic bonds and the large Ga to N mass ratio, which give phonons high frequencies and also a pronounced energy gap between acoustic and optic phonons compared to other materials. Rigorous understanding of these features in GaN gives important insights into the interplay between intrinsic phonon-phonon scattering and isotopic scattering in a range of materials.

3.
Phys Rev Lett ; 95(9): 096105, 2005 Aug 26.
Article in English | MEDLINE | ID: mdl-16197233

ABSTRACT

Calculations of the quantum-mechanical ballistic thermal conductance of single-walled carbon nanotubes, graphene, and graphite are presented, which explain previous experimental results, and directly disprove earlier theoretical calculations. The ballistic thermal conductances are smaller than had been previously thought, whereas the maximum sample lengths in which phonon transport remains ballistic are orders of magnitude larger than previously suggested. Good agreement with previous experiments is obtained, which shows that measured lower bounds to the thermal conductance of multiwalled carbon nanotubes are very close to the upper theoretical bounds for graphite. The bounds shown here draw a line between what is physical and unphysical in any measurements or calculations of carbon nanotube thermal conductance, and constitute a necessary test to their validity.

4.
Nano Lett ; 5(7): 1221-5, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16178214

ABSTRACT

We present the first calculations of finite length carbon nanotube thermal conductivity that extend from the ballistic to the diffusive regime, throughout a very wide range of lengths and temperatures. The long standing problem of vanishing scattering of the "long wavelength phonf dramatically here, making the thermal conductivity diverge as the nanotube length increases. We show that the divergence disappears if 3-phonon scattering processes are considered to second or higher order. Nevertheless, for defect free nanotubes, the thermal conductivity keeps increasing up to very large lengths (10 gm at 300 K). Defects in the nanotube are also able to remove the long wavelength divergence.


Subject(s)
Models, Chemical , Nanotubes, Carbon/chemistry , Computer Simulation , Materials Testing , Molecular Conformation , Nanotubes, Carbon/analysis , Structure-Activity Relationship , Temperature , Thermal Conductivity
5.
Phys Rev Lett ; 93(24): 246106, 2004 Dec 10.
Article in English | MEDLINE | ID: mdl-15697834

ABSTRACT

For binary compound semiconductor nanowires, we find a striking relationship between the nanowire's thermal conductivity kappa(nwire), the bulk material's thermal conductivity kappa(bulk), and the mass ratio of the material's constituent atoms, r, as kappa(bulk)/kappa(nwire) (alpha) (1+1/r)(-3/2). A significant consequence is the presence of crossovers in which a material with higher bulk thermal conductivity than the rest is no longer the best nanowire thermal conductor. We show that this behavior stems from a change in the dominant phonon scattering mechanism with decreasing nanowire size. The results have important implications for nanoscale heat dissipation, thermoelectricity, and thermal conductivity of nanocomposites.

SELECTION OF CITATIONS
SEARCH DETAIL
...