Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
3.
Eur J Pharm Sci ; 169: 106087, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34863871

ABSTRACT

To enhance dissolution rate of meloxicam (MX), a poorly soluble model drug, a natural polysaccharide excipient chitosan (CH) is employed in this work as a carrier to prepare binary interactive mixtures by either mixing or co-milling techniques. The MX-CH mixtures of three different drug loads were characterized for morphological, granulometric, and thermal properties as well as drug crystallinity. The relative dissolution rate of MX was determined in phosphate buffer of pH 6.8 using the USP-4 apparatus; a significant increase in MX dissolution rate was observed for both mixed and co-milled mixtures comparing to the raw drug. Higher dissolution rate of MX was evidently connected to surface activation by mixing or milling, which was pronounced by the higher specific surface energy as detected by inverse gas chromatography. In addition to the particle size reduction, the carrier effect of the CH was confirmed for co-milling by linear regression between the MX maximum relative dissolution rate and the total surface area of the mixture (R2 = 0.863). No MX amorphization or crystalline structure change were detected. The work of adhesion/cohesion ratio of 0.9 supports the existence of preferential adherence of MX to the coarse particles of CH to form stable interactive mixtures.


Subject(s)
Chitosan , Excipients , Meloxicam , Solubility
4.
Int J Pharm ; 608: 121110, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34547394

ABSTRACT

The aim of this systematic study was to analyze the granulometric and rheological behavior of tableting mixtures in relation to tabletability by single tablet and lab-scale batch compression with an eccentric tablet machine. Three mixtures containing 33, 50, and 66% of the cohesive drug paracetamol were prepared. The high compressibility of the powder mixtures caused problems with overcompaction or lamination in the single tablet compression method; due to jamming of the material during the filling of the die, the lab-scale batch compression was impossible. Using high shear granulation, the flow properties and tabletability were adjusted. A linear relationship between the span of granules and the specific energy measured by FT4 powder rheometer was detected. In parallel, a linear relationship between conditioned bulk density and the tensile strength of the tablets at lab-scale batch tableting was noted. The combination of dynamic image analysis and powder rheometry was useful for predicting the tabletability of pharmaceutical mixtures during the single tablet (design) compression and the lab-scale batch compression.


Subject(s)
Acetaminophen , Drug Compounding , Particle Size , Powders , Rheology , Tablets , Tensile Strength
5.
Eur J Pharm Sci ; 165: 105952, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34298140

ABSTRACT

Albeit the preparation of liquisolid systems represents an innovative approach to enhance the dissolution of poorly soluble drugs, their broader utilization is still limited mainly due to the problematic conversion of the liquid into freely flowing and readily compressible powder. Accordingly, the presented study aims to determine the optimal carrier/coating material ratio (R value) for formulations based on magnesium aluminometasilicate (NUS2) loaded with polyethylene glycol 400. Four commercially available colloidal silica were used as coating materials in nine different R values (range of 5 - 100). The obtained results suggested that the higher R value leads to the superior properties of powder mixtures, such as better flowability, as well as compacts with higher tensile strength and lower friability. Moreover, it was observed that the type of coating material impacts the properties of liquisolid systems due to the different arrangement of particles in the liquisolid mixture. To confirm the noted dependency of R value and coating material type, the one- and two-way ANOVA, linear regression and principal component analysis (PCA) techniques were performed. In addition, a comparison of results with the properties of loaded NUS2 itself revealed that LSS with sufficient properties may be prepared even without the coating material.


Subject(s)
Magnesium , Silicon Dioxide , Drug Compounding , Powders , Solubility , Tablets
6.
Int J Pharm ; 597: 120312, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33540023

ABSTRACT

Co-milling of a drug with a co-former is an efficient technique to improve the solubility of drugs. Besides the particle size reduction, the co-milling process induces a structural disorder and the creation of amorphous regions. The extent of drug solubility enhancement is dependent on the proper choice of co-milling co-former. The aim of this work was to compare the effects of different co-formers (meglumine and polyvinylpyrrolidone) on the dissolution rates of glass forming (indomethacin) and non-glass forming (mefenamic acid) model drugs. A positive impact of the co-milling on the dissolution behavior was observed in all co-milled mixtures, even if no substantial amorphization was observed. While meglumine exhibited pronounced effects on the dissolution rate of both drugs, the slightest enhancement was observed in mixtures with polyvinylpyrrolidone. The evaluation of specific release rate revealed the surface activation of drug particle is responsible for improving the dissolution rate of both drug types, but for the glass former, this surface activation could be persistent while maintaining a high dissolution rate even until a high fraction of drug is released. Our results, therefore, indicate that adequate co-former choice and consideration of drug glass forming ability are important for a successful co-milling approach to poorly water-soluble drugs.


Subject(s)
Pharmaceutical Preparations , Povidone , Drug Compounding , Indomethacin , Particle Size , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...