Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nutr Res ; 101: 31-42, 2022 05.
Article in English | MEDLINE | ID: mdl-35366596

ABSTRACT

Alpha-tocotrienol (α-TCT) is a member of the vitamin E family. It has been reported to protect the brain against various pathologies including cerebral ischemia and neurodegeneration. However, it is still unclear if α-TCT exhibits beneficial effects during brain development. We hypothesized that treatment with α-TCT improves intracellular redox homeostasis supporting normal development of neurons. We found that primary hippocampal neurons isolated from rat feti grown in α-TCT-containing media achieved greater levels of neurite complexity compared to ethanol-treated control neurons. Neurons were treated with 1 µM α-TCT for 3 weeks, and media were replaced with fresh α-TCT every week. Treatment with α-TCT increased α-TCT levels (26 pmol/mg protein) in the cells, whereas the control neurons did not contain α-TCT. α-TCT-treated neurons produced adenosine triphosphate (ATP) at a higher rate and increased ATP retention at neurites, supporting formation of neurite branches. Although treatment with α-TCT alone did not change neuronal viability, neurons grown in α-TCT were more resistant to death at maturity. We further found that messenger RNA and protein levels of B-cell lymphoma-extra large (Bcl-xL) are increased by α-TCT treatment without inducing posttranslational cleavage of Bcl-xL. Bcl-xL is known to enhance mitochondrial energy production, which improves neuronal function including neurite outgrowth and neurotransmission. Therefore α-TCT-mediated Bcl-xL upregulation may be the central mechanism of neuroprotection seen in the α-TCT-treated group. In summary, treatment with α-TCT upregulates Bcl-xL and increases ATP levels at neurites. This correlates with increased neurite branching during development and with protection of mature neurons against oxidative stress.


Subject(s)
Lymphoma, B-Cell , Neurons , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Animals , Hippocampus/metabolism , Lymphoma, B-Cell/metabolism , Rats , Tocotrienols , Up-Regulation , bcl-X Protein/genetics , bcl-X Protein/metabolism
2.
Neural Regen Res ; 16(1): 12-15, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32788441

ABSTRACT

Bcl-xL is a pro-survival protein of the Bcl2 family found in the mitochondrial membrane. Bcl-xL supports growth, development, and maturation of neurons, and it also prevents neuronal death during neurotoxic stimulation. This article reviews the mechanisms and upstream signaling that regulate the activity and abundance of Bcl-xL. Our team and others have reported that oxidative stress is a key regulator of intracellular Bcl-xL balance in neurons. Oxidative stress regulates synthesis, degradation, and activity of Bcl-xL and therefore neuronal function. During apoptosis, pro-apoptotic Bcl2 proteins such as Bax and Bak translocate to and oligomerize in the mitochondrial membrane. Formation of oligomers causes release of cytochrome c and activation of caspases that lead to neuronal death. Bcl-xL binds directly to pro-apoptotic Bcl2 proteins to block apoptotic signaling. Although anti-apoptotic roles of Bcl-xL have been well documented, an increasing number of studies in recent decades show that protein binding partners of Bcl-xL are not limited to Bcl2 proteins. Bcl-xL forms a complex with F1Fo ATP synthase, DJ-1, DRP1, IP3R, and the ryanodine receptor. These proteins support physiological processes in neurons such as growth and development and prevent neuronal damage by regulating mitochondrial ATP production, synapse formation, synaptic vesicle recycling, neurotransmission, and calcium signaling. However, under conditions of oxidative stress, Bcl-xL undergoes proteolytic cleavage thus lowering the abundance of functional Bcl-xL in neurons. Additionally, oxidative stress alters formation of Bcl-xL-mediated multiprotein complexes by regulating post-translational phosphorylation. Finally, oxidative stress regulates transcription factors that target the Bcl-x gene and alter accessibility of microRNA to mRNA influencing mRNA levels of Bcl-xL. In this review, we discussed how Bcl-xL supports the normal physiology of neurons, and how oxidative stress contributes to pathology by manipulating the dynamics of Bcl-xL production, degradation, and activity.

3.
Int J Mol Sci ; 21(1)2019 Dec 28.
Article in English | MEDLINE | ID: mdl-31905614

ABSTRACT

B-cell lymphoma-extra large (Bcl-xL) is an anti-apoptotic member of the Bcl2 family of proteins, which supports neurite outgrowth and neurotransmission by improving mitochondrial function. During excitotoxic stimulation, however, Bcl-xL undergoes post-translational cleavage to ∆N-Bcl-xL, and accumulation of ∆N-Bcl-xL causes mitochondrial dysfunction and neuronal death. In this study, we hypothesized that the generation of reactive oxygen species (ROS) during excitotoxicity leads to formation of ∆N-Bcl-xL. We further proposed that the application of an antioxidant with neuroprotective properties such as α-tocotrienol (TCT) will prevent ∆N-Bcl-xL-induced mitochondrial dysfunction via its antioxidant properties. Primary hippocampal neurons were treated with α-TCT, glutamate, or a combination of both. Glutamate challenge significantly increased cytosolic and mitochondrial ROS and ∆N-Bcl-xL levels. ∆N-Bcl-xL accumulation was accompanied by intracellular ATP depletion, loss of mitochondrial membrane potential, and cell death. α-TCT prevented loss of mitochondrial membrane potential in hippocampal neurons overexpressing ∆N-Bcl-xL, suggesting that ∆N-Bcl-xL caused the loss of mitochondrial function under excitotoxic conditions. Our data suggest that production of ROS is an important cause of ∆N-Bcl-xL formation and that preventing ROS production may be an effective strategy to prevent ∆N-Bcl-xL-mediated mitochondrial dysfunction and thus promote neuronal survival.


Subject(s)
Antioxidants/pharmacology , Neurons/drug effects , Neuroprotective Agents/pharmacology , Protein Processing, Post-Translational , Proteolysis , Tocotrienols/pharmacology , Adenosine Triphosphate/metabolism , Animals , Cells, Cultured , Hippocampus/cytology , Membrane Potential, Mitochondrial , Mitochondria/drug effects , Mitochondria/metabolism , Neurons/metabolism , Neurons/physiology , Oxidative Stress , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , bcl-X Protein/metabolism
4.
Molecules ; 23(11)2018 Nov 19.
Article in English | MEDLINE | ID: mdl-30463183

ABSTRACT

B-cell lymphoma-extra large (Bcl-xL) is an anti-apoptotic Bcl-2 protein found in the mitochondrial membrane. Bcl-xL is reported to support normal brain development and protects neurons against toxic stimulation during pathological process via its roles in regulation of mitochondrial functions. Despite promising evidence showing neuroprotective properties of Bcl-xL, commonly applied molecular approaches such as genetic manipulation may not be readily applicable for human subjects. Therefore, findings at the bench may be slow to be translated into treatments for disease. Currently, there is no FDA approved application that specifically targets Bcl-xL and treats brain-associated pathology in humans. In this review, we will discuss naturally occurring nutrients that may exhibit regulatory effects on Bcl-xL expression or activity, thus potentially providing affordable, readily-applicable, easy, and safe strategies to protect the brain.


Subject(s)
Brain/metabolism , Neuroprotective Agents/metabolism , Nutrients/metabolism , bcl-X Protein/metabolism , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...