Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 13(2): 262-270, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35173892

ABSTRACT

Palladium-catalyzed reactions are among the most commonly used procedures in organic synthesis. The products have a range of uses, including as intermediates in total synthesis and as screening compounds for drug discovery or agrochemical projects. Despite the known and potentially deleterious effects of low-level metal impurities in biological assays, the quantification of metal remaining in reaction products to verify the effective removal of the transition element is rarely reported. Using palladium as an exemplar, we describe a pilot study that for the first time quantifies residual metal levels in reaction products following increasingly rigorous purification protocols. Our results demonstrate that significant levels of residual palladium can remain in isolated reaction products following chromatographic purification, and only by using a subsequent metal scavenging step are they reliably reduced to a low level. Finally, we provide a set of simple guidelines that should minimize the potential for issues associated with residual palladium in reaction products.

2.
Chemistry ; 24(63): 16753-16756, 2018 Nov 13.
Article in English | MEDLINE | ID: mdl-30338587

ABSTRACT

The inthomycins are a family of structurally and biologically rich natural products isolated from Streptomyces species. Herein the implementation of a modular synthetic route is reported that has enabled the enantioselective synthesis of all three inthomycins. Key steps include Suzuki and Sonogashira cross-couplings and an enantioselective Kiyooka aldol reaction.

3.
Planta ; 243(6): 1419-27, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26919985

ABSTRACT

MAIN CONCLUSION: MAX2/strigolactone signaling in the endodermis and/or quiescent center of the root is partially sufficient to exert changes in F-actin density and cellular trafficking in the root epidermis, and alter gene expression during plant response to low Pi conditions. Strigolactones (SLs) are a new group of plant hormones that regulate different developmental processes in the plant via MAX2, an F-box protein that interacts with their receptor. SLs and MAX2 are necessary for the marked increase in root-hair (RH) density in seedlings under conditions of phosphate (Pi) deprivation. This marked elevation was associated with an active reduction in actin-filament density and endosomal movement in root epidermal cells. Also, expression of MAX2 under the SCARECROW (SCR) promoter was sufficient to confer SL sensitivity in roots, suggesting that SL signaling pathways act through a root-specific, yet non-cell-autonomous regulatory mode of action. Here we show evidence for a non-cell autonomous signaling of SL/MAX2, originating from the root endodermis, and necessary for seedling response to conditions of Pi deprivation. SCR-derived expression of MAX2 in max2-1 mutant background promoted the root low Pi response, whereas supplementation of the synthetic SL GR24 to these SCR:MAX2 expressing lines further enhanced this response. Moreover, the SCR:MAX2 expression led to changes in actin density and endosome movement in epidermal cells and in TIR1 and PHO2 gene expression. These results demonstrate that MAX2 signaling in the endodermis and/or quiescent center is partially sufficient to exert changes in F-actin density and cellular trafficking in the epidermis, and alter gene expression under low Pi conditions.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/metabolism , Carrier Proteins/physiology , Lactones/metabolism , Phosphates/metabolism , Actins/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Gene Expression Regulation, Plant , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Promoter Regions, Genetic , Signal Transduction
4.
J Exp Bot ; 66(5): 1499-510, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25609825

ABSTRACT

Strigolactones (SLs) are plant hormones that regulate the plant response to phosphate (Pi) growth conditions. At least part of SL-signalling execution in roots involves MAX2-dependent effects on PIN2 polar localization in the plasma membrane (PM) and actin bundling and dynamics. We examined PIN2 expression, PIN2 PM localization, endosome trafficking, and actin bundling under low-Pi conditions: a MAX2-dependent reduction in PIN2 trafficking and polarization in the PM, reduced endosome trafficking, and increased actin-filament bundling were detected in root cells. The intracellular protein trafficking that is related to PIN proteins but unassociated with AUX1 PM localization was selectively inhibited. Exogenous supplementation of the synthetic SL GR24 to a SL-deficient mutant (max4) led to depletion of PIN2 from the PM under low-Pi conditions. Accordingly, roots of mutants in MAX2, MAX4, PIN2, TIR3, and ACTIN2 showed a reduced low-Pi response compared with the wild type, which could be restored by auxin (for all mutants) or GR24 (for all mutants except max2-1). Changes in PIN2 polarity, actin bundling, and vesicle trafficking may be involved in the response to low Pi in roots, dependent on SL/MAX2 signalling.


Subject(s)
Actin Cytoskeleton/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cell Membrane/metabolism , Lactones/metabolism , Phosphates/metabolism , Plant Growth Regulators/metabolism , Actin Cytoskeleton/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Membrane/genetics , Gene Expression Regulation, Plant , Protein Transport , Signal Transduction
5.
J Org Chem ; 79(3): 1516-20, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24422520

ABSTRACT

A short and cost-effective synthesis of the important strigolactone analogue (+)-GR24 is described. Central to this new approach is the concise, enantioselective synthesis of the A-C ring system.


Subject(s)
Heterocyclic Compounds, 3-Ring/chemistry , Heterocyclic Compounds, 3-Ring/chemical synthesis , Lactones/chemistry , Lactones/chemical synthesis , Stereoisomerism , Magnetic Resonance Spectroscopy , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...