Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
bioRxiv ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38328187

ABSTRACT

A fundamental challenge for cystic fibrosis (CF) gene therapy is ensuring sufficient transduction of airway epithelia to achieve therapeutic correction. Hypertonic saline (HTS) is frequently administered to people with CF to enhance mucus clearance. HTS transiently disrupts epithelial cell tight junctions, but its ability to improve gene transfer has not been investigated. Here we asked if increasing the concentration of NaCl enhances the transduction efficiency of three gene therapy vectors: adenovirus, AAV, and lentiviral vectors. Vectors formulated with 3-7% NaCl exhibited markedly increased transduction for all three platforms, leading to anion channel correction in primary cultures of human CF epithelial cells and enhanced gene transfer in mouse and pig airways in vivo. The mechanism of transduction enhancement involved tonicity but not osmolarity or pH. Formulating vectors with a high ionic strength solution is a simple strategy to greatly enhance efficacy and immediately improve preclinical or clinical applications.

2.
Front Genome Ed ; 5: 1271813, 2023.
Article in English | MEDLINE | ID: mdl-38077224

ABSTRACT

Considerable effort has been devoted to developing adeno-associated virus (AAV)-based vectors for gene therapy in cystic fibrosis (CF). As a result of directed evolution and capsid shuffling technology, AAV capsids are available with widespread tropism for airway epithelial cells. For example, AAV2.5T and AAV6.2 are two evolved capsids with improved airway epithelial cell transduction properties over their parental serotypes. However, limited research has been focused on identifying their specific cellular tropism. Restoring cystic fibrosis transmembrane conductance regulator (CFTR) expression in surface columnar epithelial cells is necessary for the correction of the CF airway phenotype. Basal cells are a progenitor population of the conducting airways responsible for replenishing surface epithelial cells (including secretory cells and ionocytes), making correction of this cell population vital for a long-lived gene therapy strategy. In this study, we investigate the tropism of AAV capsids for three cell types in primary cultures of well-differentiated human airway epithelial (HAE) cells and primary human airway basal cells. We observed that AAV2.5T transduced surface epithelial cells better than AAV6.2, while AAV6.2 transduced airway basal cells better than AAV2.5T. We also investigated a recently developed capsid, AAV6.2FF, which has two surface tyrosines converted to phenylalanines. Next, we incorporated reciprocal mutations to create AAV capsids with further improved surface and basal cell transduction characteristics. Lastly, we successfully employed a split-intein approach using AAV to deliver an adenine base editor (ABE) to repair the CFTR R553X mutation. Our results suggest that rational incorporation of AAV capsid mutations improves AAV transduction of the airway surface and progenitor cells and may ultimately lead to improved pulmonary function in people with CF.

3.
Nucleic Acids Res ; 49(18): 10558-10572, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34520545

ABSTRACT

Mutations in the CFTR gene that lead to premature stop codons or splicing defects cause cystic fibrosis (CF) and are not amenable to treatment by small-molecule modulators. Here, we investigate the use of adenine base editor (ABE) ribonucleoproteins (RNPs) that convert A•T to G•C base pairs as a therapeutic strategy for three CF-causing mutations. Using ABE RNPs, we corrected in human airway epithelial cells premature stop codon mutations (R553X and W1282X) and a splice-site mutation (3849 + 10 kb C > T). Following ABE delivery, DNA sequencing revealed correction of these pathogenic mutations at efficiencies that reached 38-82% with minimal bystander edits or indels. This range of editing was sufficient to attain functional correction of CFTR-dependent anion channel activity in primary epithelial cells from CF patients and in a CF patient-derived cell line. These results demonstrate the utility of base editor RNPs to repair CFTR mutations that are not currently treatable with approved therapeutics.


Subject(s)
Adenine , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Gene Editing , Respiratory Mucosa/metabolism , Cell Line , Cells, Cultured , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , Mutation , Ribonucleoproteins
4.
Cells ; 10(5)2021 04 25.
Article in English | MEDLINE | ID: mdl-33923029

ABSTRACT

Cystic fibrosis (CF) is caused by genetic mutations of the CF transmembrane conductance regulator (CFTR), leading to disrupted transport of Cl- and bicarbonate and CF lung disease featuring bacterial colonization and chronic infection in conducting airways. CF pigs engineered by mutating CFTR develop lung disease that mimics human CF, and are well-suited for investigating CF lung disease therapeutics. Clinical data suggest small airways play a key role in the early pathogenesis of CF lung disease, but few preclinical studies have focused on small airways. Efficient targeted delivery of CFTR cDNA to small airway epithelium may correct the CFTR defect and prevent lung infections. Adeno-associated virus 4 (AAV4) is a natural AAV serotype and a safe vector with lower immunogenicity than other gene therapy vectors such as adenovirus. Our analysis of AAV natural serotypes using cultured primary pig airway epithelia showed that AAV4 has high tropism for airway epithelia and higher transduction efficiency for small airways compared with large airways. AAV4 mediated the delivery of CFTR, and corrected Cl- transport in cultured primary small airway epithelia from CF pigs. Moreover, AAV4 was superior to all other natural AAV serotypes in transducing ITGα6ß4+ pig distal lung progenitor cells. In addition, AAV4 encoding eGFP can infect pig distal lung epithelia in vivo. This study demonstrates AAV4 tropism in small airway progenitor cells, which it efficiently transduces. AAV4 offers a novel tool for mechanistical study of the role of small airway in CF lung pathogenesis in a preclinical large animal model.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/administration & dosage , Cystic Fibrosis/therapy , Dependovirus/genetics , Genetic Vectors/administration & dosage , Lung/metabolism , Respiratory Mucosa/metabolism , Stem Cells/metabolism , Animals , Cells, Cultured , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Genetic Vectors/genetics , Humans , Swine
5.
Am J Respir Cell Mol Biol ; 65(2): 146-156, 2021 08.
Article in English | MEDLINE | ID: mdl-33789071

ABSTRACT

In a newborn pig cystic fibrosis (CF) model, the ability of gland-containing airways to fight infection was affected by at least two major host-defense defects: impaired mucociliary transport and a lower airway surface liquid (ASL) pH. In the gland-containing airways, the ASL pH is balanced by CFTR (CF transmembrane conductance regulator) and ATP12A, which, respectively, control HCO3- transport and proton secretion. We found that, although porcine small airway tissue expressed lower amounts of ATP12A, the ASL of epithelial cultures from CF distal small airways (diameter < 200 µm) were nevertheless more acidic (compared with non-CF airways). Therefore, we hypothesized that gland-containing airways and small airways control acidification using distinct mechanisms. Our microarray data suggested that small airway epithelia mediate proton secretion via ATP6V0D2, an isoform of the V0 d subunit of the H+-translocating plasma membrane V-type ATPase. Immunofluorescence of small airways verified the expression of the V0 d2 subunit isoform at the apical surface of Muc5B+ secretory cells, but not ciliated cells. Inhibiting the V-type ATPase with bafilomycin A1 elevated the ASL pH of small airway cultures, in the presence or absence of HCO3-, and decreased ASL viscosity. These data suggest that, unlike large airways, which are acidified by ATP12A activity, small airways are acidified by V-type ATPase, thus identifying V-type ATPase as a novel therapeutic target for small airway diseases.


Subject(s)
Bicarbonates/metabolism , Cystic Fibrosis/metabolism , Epithelial Cells/metabolism , Respiratory Mucosa/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Animals , Animals, Genetically Modified , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Female , Hydrogen-Ion Concentration , Male , Swine , Vacuolar Proton-Translocating ATPases/antagonists & inhibitors , Vacuolar Proton-Translocating ATPases/genetics
6.
Hum Gene Ther ; 31(17-18): 985-995, 2020 09.
Article in English | MEDLINE | ID: mdl-32718227

ABSTRACT

The list of successful gene therapy trials using adeno-associated virus (AAV)-based vectors continues to grow and includes a wide range of monogenic diseases. Replication incompetent AAV genomes typically remain episomal and expression dilutes as cells divide and die. Consequently, long-term transgene expression from AAV is best suited for quiescent cell types, such as retinal cells, myocytes, or neurons. For genetic diseases that involve cells with steady turnover, AAV-conferred correction may require routine readministration, where every dose carries the risk of developing an adaptive immune response that renders treatment ineffective. Here, we discuss innovative approaches to permanently modify the host genome using AAV-based platforms, thus potentially requiring only a single dose. Such approaches include using AAV delivery of DNA transposons, homologous recombination templates into safe harbors, and nucleases for targeting integration. In tissues with continual cell turnover, genetic modification of progenitor cell populations will help ensure persistent therapeutic outcomes. Combining the safety profile of AAV-based gene therapy vectors with the ability to integrate a therapeutic transgene creates novel solutions to the challenge of lifelong curative treatments for human genetic diseases.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/therapy , Dependovirus/genetics , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Cystic Fibrosis/genetics , Genetic Vectors/genetics , Humans
7.
Physiol Rep ; 6(2)2018 01.
Article in English | MEDLINE | ID: mdl-29380953

ABSTRACT

The airway-surface liquid pH (pHASL ) is slightly acidic relative to the plasma and becomes more acidic in airway diseases, leading to impaired host defense. CO2 in the large airways decreases during inspiration (0.04% CO2 ) and increases during expiration (5% CO2 ). Thus, we hypothesized that pHASL would fluctuate during the respiratory cycle. We measured pHASL on cultures of airway epithelia while changing apical CO2 concentrations. Changing apical CO2 produced only very slow pHASL changes, occurring in minutes, inconsistent with respiratory phases that occur in a few seconds. We hypothesized that pH changes were slow because airway-surface liquid has little carbonic anhydrase activity. To test this hypothesis, we applied the carbonic anhydrase inhibitor acetazolamide and found minimal effects on CO2 -induced pHASL changes. In contrast, adding carbonic anhydrase significantly increased the rate of change in pHASL . Using pH-dependent rates obtained from these experiments, we modeled the pHASL during respiration to further understand how pH changes with physiologic and pathophysiologic respiratory cycles. Modeled pHASL oscillations were small and affected by the respiration rate, but not the inspiratory:expiratory ratio. Modeled equilibrium pHASL was affected by the inspiratory:expiratory ratio, but not the respiration rate. The airway epithelium is the only tissue that is exposed to large and rapid CO2 fluctuations. We speculate that the airways may have evolved minimal carbonic anhydrase activity to mitigate large changes in the pHASL during breathing that could potentially affect pH-sensitive components of ASL.


Subject(s)
Carbonic Anhydrases/metabolism , Hydrogen-Ion Concentration , Respiration , Respiratory Mucosa/chemistry , Respiratory Mucosa/enzymology , Animals , Animals, Newborn , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...