Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Insects ; 7(4)2016 Sep 26.
Article in English | MEDLINE | ID: mdl-27681741

ABSTRACT

(1) Global movement of propagative plant material is a major pathway for introduction of Bemisia tabaci (Hemiptera: Aleyrodidae) into poinsettia greenhouses. Starting a poinsettia crop with high pest numbers disrupts otherwise successful biological control programs and widespread resistance of B. tabaci against pesticides is limiting growers' options to control this pest; (2) This study investigated the use of several biopesticides (mineral oil, insecticidal soap, Beauveria bassiana, Isaria fumosorosea, Steinernema feltiae) and combinations of these products as immersion treatments (cutting dips) to control B. tabaci on poinsettia cuttings. In addition, phytotoxicity risks of these treatments on poinsettia cuttings, and effects of treatment residues on mortality of commercial whitefly parasitoids (Eretmocerus eremicus and Encarsia formosa) were determined; (3) Mineral oil (0.1% v/v) and insecticidal soap (0.5%) + B. bassiana (1.25 g/L) were the most effective treatments; only 31% and 29%, respectively, of the treated B. tabaci survived on infested poinsettia cuttings and B. tabaci populations were lowest in these treatments after eight weeks. Phytotoxicity risks of these treatments were acceptable, and dip residues had little effect on survival of either parasitoid, and are considered highly compatible; (4) Use of poinsettia cutting dips will allow growers to knock-down B. tabaci populations to a point where they can be managed successfully thereafter with existing biocontrol strategies.

2.
Exp Appl Acarol ; 62(2): 171-80, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24037505

ABSTRACT

Biological control in ornamental crops is challenging due to the wide diversity of crops and cultivars. In this study, we tested the hypothesis that trichome density on different host plants influences the behavior and performance of the predatory mite Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae). Behavioural observations of this predator in the presence or absence of prey (western flower thrips, Frankliniella occidentalis Pergande) (Thysanoptera: Thripidae) were done on leaf squares of ornamental plant species differing in trichome density (rose, chrysanthemum and gerbera) and compared to a smooth surface (plastic). Tomato leaves were used to observe the influence of glandular trichomes. The performance of A. swirskii was assessed by measuring predation and oviposition rate. Behaviour of A. swirskii was influenced by plant species. Up to a certain density of trichomes, trichome number had a negative effect on walking speed. It was highest on plastic, followed by rose. No differences were found among chrysanthemum, gerbera and tomato. Walking speed was slightly higher on disks without prey. Proportion of time spent walking was the same on leaf disks of all plant species, with and without prey. No effect of glandular trichomes on tomato leaves was seen. Most thrips were killed and consumed on gerbera, and least on rose. Predation rates on chrysanthemum and plastic were intermediate. In contrast, no differences in oviposition rate were found among plant species. The results of this study indicate that trichome density can explain some of the variability in efficacy of A. swirskii on different crops. Release rates of A. swirskii may need to be adjusted depending on the crop in which it is used.


Subject(s)
Mites , Predatory Behavior , Trichomes , Animals , Female , Oviposition , Pest Control, Biological , Thysanoptera
SELECTION OF CITATIONS
SEARCH DETAIL
...