Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Front Big Data ; 4: 577164, 2021.
Article in English | MEDLINE | ID: mdl-34723175

ABSTRACT

For the segmentation of magnetic resonance brain images into anatomical regions, numerous fully automated methods have been proposed and compared to reference segmentations obtained manually. However, systematic differences might exist between the resulting segmentations, depending on the segmentation method and underlying brain atlas. This potentially results in sensitivity differences to disease and can further complicate the comparison of individual patients to normative data. In this study, we aim to answer two research questions: 1) to what extent are methods interchangeable, as long as the same method is being used for computing normative volume distributions and patient-specific volumes? and 2) can different methods be used for computing normative volume distributions and assessing patient-specific volumes? To answer these questions, we compared volumes of six brain regions calculated by five state-of-the-art segmentation methods: Erasmus MC (EMC), FreeSurfer (FS), geodesic information flows (GIF), multi-atlas label propagation with expectation-maximization (MALP-EM), and model-based brain segmentation (MBS). We applied the methods on 988 non-demented (ND) subjects and computed the correlation (PCC-v) and absolute agreement (ICC-v) on the volumes. For most regions, the PCC-v was good ( > 0.75 ), indicating that volume differences between methods in ND subjects are mainly due to systematic differences. The ICC-v was generally lower, especially for the smaller regions, indicating that it is essential that the same method is used to generate normative and patient data. To evaluate the impact on single-subject analysis, we also applied the methods to 42 patients with Alzheimer's disease (AD). In the case where the normative distributions and the patient-specific volumes were calculated by the same method, the patient's distance to the normative distribution was assessed with the z-score. We determined the diagnostic value of this z-score, which showed to be consistent across methods. The absolute agreement on the AD patients' z-scores was high for regions of thalamus and putamen. This is encouraging as it indicates that the studied methods are interchangeable for these regions. For regions such as the hippocampus, amygdala, caudate nucleus and accumbens, and globus pallidus, not all method combinations showed a high ICC-z. Whether two methods are indeed interchangeable should be confirmed for the specific application and dataset of interest.

2.
Eur Radiol ; 29(10): 5148-5159, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30859283

ABSTRACT

OBJECTIVES: This study explored group-wise quantitative measures of tract-specific white matter (WM) microstructure and functional default mode network (DMN) connectivity to establish an initial indication of their clinical applicability for early-stage and follow-up differential diagnosis of Alzheimer's disease (AD) and behavioural variant frontotemporal dementia (bvFTD). METHODS: Eleven AD and 12 bvFTD early-stage patients and 18 controls underwent diffusion tensor imaging and resting state functional magnetic resonance imaging at 3 T. All AD and 6 bvFTD patients underwent the same protocol at 1-year follow-up. Functional connectivity measures of DMN and WM tract-specific diffusivity measures were determined for all groups. Exploratory analyses were performed to compare all measures between the three groups at baseline and between patients at follow-up. Additionally, the difference between baseline and follow-up diffusivity measures in AD and bvFTD patients was compared. RESULTS: Functional connectivity of the DMN was not different between groups at baseline and at follow-up. Diffusion abnormalities were observed widely in bvFTD and regionally in the hippocampal cingulum in AD. The extent of the differences between bvFTD and AD was diminished at follow-up, yet abnormalities were still more pronounced in bvFTD. The rate of change was similar in bvFTD and AD. CONCLUSIONS: This study provides a tentative indication that quantitative tract-specific microstructural WM abnormalities, but not quantitative functional connectivity of the DMN, may aid early-stage and follow-up differential diagnosis of bvFTD and AD. Specifically, pronounced microstructural changes in anterior WM tracts may characterise bvFTD, whereas microstructural abnormalities of the hippocampal cingulum may characterise AD. KEY POINTS: • The clinical applicability of quantitative brain imaging measures for early-stage and follow-up differential diagnosis of dementia subtypes was explored using a group-wise approach. • Quantitative tract-specific microstructural white matter abnormalities, but not quantitative functional connectivity of the default mode network, may aid early-stage and follow-up differential diagnosis of behavioural variant frontotemporal dementia and Alzheimer's disease. • Pronounced microstructural white matter (WM) changes in anterior WM tracts characterise behavioural variant frontotemporal dementia, whereas microstructural WM abnormalities of the hippocampal cingulum in the absence of other WM changes characterise Alzheimer's disease.


Subject(s)
Alzheimer Disease/diagnosis , Behavior , Diffusion Magnetic Resonance Imaging/methods , Frontotemporal Dementia/diagnosis , White Matter/pathology , Adult , Aged , Alzheimer Disease/psychology , Diagnosis, Differential , Female , Frontotemporal Dementia/psychology , Humans , Male , Middle Aged , Nerve Net/pathology
3.
Astron Astrophys ; 6152018 Jul.
Article in English | MEDLINE | ID: mdl-30185990

ABSTRACT

CONTEXT: In bright photodissociation regions (PDRs) associated to massive star formation, the presence of dense "clumps" that are immersed in a less dense interclump medium is often proposed to explain the difficulty of models to account for the observed gas emission in high-excitation lines. AIMS: We aim at presenting a comprehensive view of the modeling of the CO rotational ladder in PDRs, including the high-J lines that trace warm molecular gas at PDR interfaces. METHODS: We observed the 12CO and 13CO ladders in two prototypical PDRs, the Orion Bar and NGC 7023 NW using the instruments onboard Herschel. We also considered line emission from key species in the gas cooling of PDRs (C+, O, H2) and other tracers of PDR edges such as OH and CH+. All the intensities are collected from Herschel observations, the literature and the Spitzer archive and are analyzed using the Meudon PDR code. RESULTS: A grid of models was run to explore the parameter space of only two parameters: thermal gas pressure and a global scaling factor that corrects for approximations in the assumed geometry. We conclude that the emission in the high-J CO lines, which were observed up to J up =23 in the Orion Bar (J up =19 in NGC 7023), can only originate from small structures of typical thickness of a few 10-3 pc and at high thermal pressures (Pth ~ 108 K cm-3). CONCLUSIONS: Compiling data from the literature, we found that the gas thermal pressure increases with the intensity of the UV radiation field given by G0, following a trend in line with recent simulations of the photoevaporation of illuminated edges of molecular clouds. This relation can help rationalising the analysis of high-J CO emission in massive star formation and provides an observational constraint for models that study stellar feedback on molecular clouds.

4.
Brain Imaging Behav ; 12(2): 402-410, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28321605

ABSTRACT

Stimulant prescription rates for attention deficit hyperactivity disorder (ADHD) are increasing, even though potential long-term effects on the developing brain have not been well-studied. A previous randomized clinical trial showed short-term age-dependent effects of stimulants on the DA system. We here assessed the long-term modifying effects of age-of-first-stimulant treatment on the human brain and behavior. 81 male adult ADHD patients were stratified into three groups: 1) early stimulant treatment (EST; <16 years of age) 2) late stimulant treatment (LST: ≥23 years of age) and 3) stimulant treatment naive (STN; no history of stimulant treatment). We used pharmacological magnetic resonance imaging (phMRI) to assess the cerebral blood flow (CBF) response to an oral methylphenidate challenge (MPH, 0.5 mg/kg), as an indirect measure of dopamine function in fronto-striatal areas. In addition, mood and anxiety scores, and recreational drug use were assessed. Baseline ACC CBF was lower in the EST than the STN group (p = 0.03), although CBF response to MPH was similar between the three groups (p = 0.23). ADHD symptom severity was higher in the STN group compared to the other groups (p < 0.01). In addition, the EST group reported more depressive symptoms (p = 0.04), but not anxiety (p = 0.26), and less recreational drug use (p = 0.04). In line with extensive pre-clinical data, our data suggest that early, but not late, stimulant treatment long-lastingly affects the human brain and behavior, possibly indicating fundamental changes in the dopamine system.


Subject(s)
Attention Deficit Disorder with Hyperactivity/drug therapy , Brain/drug effects , Central Nervous System Stimulants/therapeutic use , Cerebrovascular Circulation/drug effects , Methylphenidate/therapeutic use , Adult , Affect/drug effects , Age Factors , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Attention Deficit Disorder with Hyperactivity/physiopathology , Brain/diagnostic imaging , Brain/growth & development , Brain/physiopathology , Humans , Male , Substance-Related Disorders , Time Factors , Treatment Outcome , Young Adult
5.
Neuroimage ; 169: 11-22, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29203452

ABSTRACT

Both normal aging and neurodegenerative disorders such as Alzheimer's disease (AD) cause morphological changes of the brain. It is generally difficult to distinguish these two causes of morphological change by visual inspection of magnetic resonance (MR) images. To facilitate making this distinction and thus aid the diagnosis of neurodegenerative disorders, we propose a method for developing a spatio-temporal model of morphological differences in the brain due to normal aging. The method utilizes groupwise image registration to characterize morphological variation across brain scans of people with different ages. To extract the deformations that are due to normal aging we use partial least squares regression, which yields modes of deformations highly correlated with age, and corresponding scores for each input subject. Subsequently, we determine a distribution of morphologies as a function of age by fitting smooth percentile curves to these scores. This distribution is used as a reference to which a person's morphology score can be compared. We validate our method on two different datasets, using images from both cognitively normal subjects and patients with Alzheimer disease (AD). Results show that the proposed framework extracts the expected atrophy patterns. Moreover, the morphology scores of cognitively normal subjects are on average lower than the scores of AD subjects, indicating that morphology differences between AD subjects and healthy subjects can be partly explained by accelerated aging. With our methods we are able to assess accelerated brain aging on both population and individual level. A spatio-temporal aging brain model derived from 988 T1-weighted MR brain scans from a large population imaging study (age range 45.9-91.7y, mean age 68.3y) is made publicly available at www.agingbrain.nl.


Subject(s)
Aging, Premature/pathology , Aging/pathology , Alzheimer Disease/pathology , Brain/anatomy & histology , Magnetic Resonance Imaging/methods , Models, Anatomic , Models, Statistical , Neuroimaging/methods , Aged , Aged, 80 and over , Aging, Premature/diagnostic imaging , Alzheimer Disease/diagnostic imaging , Atlases as Topic , Atrophy/pathology , Brain/diagnostic imaging , Brain/pathology , Datasets as Topic , Female , Humans , Male , Middle Aged
6.
Astron Astrophys ; 6062017 Oct.
Article in English | MEDLINE | ID: mdl-28989177

ABSTRACT

CONTEXT: L1630 in the Orion B molecular cloud, which includes the iconic Horsehead Nebula, illuminated by the star system σ Ori, is an example of a photodissociation region (PDR). In PDRs, stellar radiation impinges on the surface of dense material, often a molecular cloud, thereby inducing a complex network of chemical reactions and physical processes. AIMS: Observations toward L1630 allow us to study the interplay between stellar radiation and a molecular cloud under relatively benign conditions, that is, intermediate densities and an intermediate UV radiation field. Contrary to the well-studied Orion Molecular Cloud 1 (OMC1), which hosts much harsher conditions, L1630 has little star formation. Our goal is to relate the [Cii] fine-structure line emission to the physical conditions predominant in L1630 and compare it to studies of OMC1. METHODS: The [Cii] 158 µm line emission of L1630 around the Horsehead Nebula, an area of 12' × 17', was observed using the upgraded German Receiver for Astronomy at Terahertz Frequencies (upGREAT) onboard the Stratospheric Observatory for Infrared Astronomy (SOFIA). RESULTS: Of the [Cii] emission from the mapped area 95%, 13 L⊙, originates from the molecular cloud; the adjacent Hii region contributes only 5%, that is, 1 L⊙. From comparison with other data (CO(1-0)-line emission, far-infrared (FIR) continuum studies, emission from polycyclic aromatic hydrocarbons (PAHs)), we infer a gas density of the molecular cloud of nH ∼ 3 · 103 cm-3, with surface layers, including the Horsehead Nebula, having a density of up to nH ∼ 4 · 104 cm-3. The temperature of the surface gas is T ∼ 100 K. The average [Cii] cooling efficiency within the molecular cloud is 1.3 · 10-2. The fraction of the mass of the molecular cloud within the studied area that is traced by [Cii] is only 8%. Our PDR models are able to reproduce the FIR-[Cii] correlations and also the CO(1-0)-[Cii] correlations. Finally, we compare our results on the heating efficiency of the gas with theoretical studies of photoelectric heating by PAHs, clusters of PAHs, and very small grains, and find the heating efficiency to be lower than theoretically predicted, a continuation of the trend set by other observations. CONCLUSIONS: In L1630 only a small fraction of the gas mass is traced by [Cii]. Most of the [Cii] emission in the mapped area stems from PDR surfaces. The layered edge-on structure of the molecular cloud and limitations in spatial resolution put constraints on our ability to relate different tracers to each other and to the physical conditions. From our study, we conclude that the relation between [Cii] emission and physical conditions is likely to be more complicated than often assumed. The theoretical heating efficiency is higher than the one we calculate from the observed [Cii] emission in the L1630 molecular cloud.

7.
Osteoarthritis Cartilage ; 25(9): 1484-1487, 2017 09.
Article in English | MEDLINE | ID: mdl-28512063

ABSTRACT

OBJECTIVE: To evaluate the possibility of assessing knee cartilage with T2-mapping and delayed gadolinium enhanced magnetic resonance imaging (MRI) of cartilage (dGEMRIC) in one post-contrast MR examination at 3 Tesla (T). DESIGN: T2 mapping was performed in 10 healthy volunteers at baseline; directly after baseline; after 10 min of cycling; and after 90 min delay, and in 16 osteoarthritis patients before and after intravenous administration of a double dose gadolinium dimeglumine contrast agent, reflecting key dGEMRIC protocol elements. Differences in T2 relaxation times between each timepoint and baseline were calculated for 6 cartilage regions using paired t tests or Wilcoxon signed-rank tests and the smallest detectable change (SDC). RESULTS: After cycling, a significant change in T2 relaxation times was found in the lateral weight-bearing tibial plateau (+1.0 ms, P = 0.04). After 90 min delay, significant changes were found in the lateral weight-bearing femoral condyle (+1.2 ms, P = 0.03) and the lateral weight-bearing tibial plateau (+1.3 ms, P = 0.01). In these regions of interests (ROIs), absolute differences were small and lower than the corresponding SDCs. T2-mapping after contrast administration only showed statistically significantly lower T2 relaxation times in the medial posterior femoral condyle (-2.4 ms, P < 0.001) with a change exceeding the SDC. CONCLUSION: Because dGEMRIC protocol elements resulted in only small differences in T2 relaxation times that were not consistent and lower than the SDC in the majority of regions, our results suggest that T2-mapping and dGEMRIC can be performed reliably in a single imaging session to assess cartilage biochemical composition in knee osteoarthritis (OA) at 3 T.


Subject(s)
Cartilage, Articular/diagnostic imaging , Knee Joint/diagnostic imaging , Magnetic Resonance Imaging/methods , Osteoarthritis, Knee/diagnostic imaging , Adult , Aged , Contrast Media/administration & dosage , Cross-Sectional Studies , Female , Femur/diagnostic imaging , Gadolinium DTPA/administration & dosage , Healthy Volunteers , Humans , Image Interpretation, Computer-Assisted/methods , Infusions, Intravenous , Male , Middle Aged , Tibia/diagnostic imaging , Weight-Bearing
8.
Eur Radiol ; 23(2): 496-504, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22886535

ABSTRACT

OBJECTIVES: To assess the reproducibility of 3D delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) at 3 T in early stage knee osteoarthritis (OA) patients. METHODS: In 20 patients, 3D dGEMRIC at 3 T was acquired twice within 7 days. To correct for patient motion during acquisition, all images were rigidly registered in 3D. Eight anatomical cartilage ROIs were analysed on both images of each patient. Capability of dGEMRIC to yield T1 maps that reproducibly distinguish spatial differences in cartilage quality was assessed in two ROIs within a single slice in each patient. Reproducibility was assessed using ICCs and Bland-Altman plots. RESULTS: ICCs ranged from 0.87 to 0.95, indicating good reproducibility. T1 maps revealed reproducible spatial differences in cartilage quality (ICC 0.79). Based on the Bland-Altman plots, we defined a threshold of 95 ms to determine if a change in dGEMRIC outcome in longitudinal research was statistically significant. CONCLUSIONS: 3D knee dGEMRIC at 3 T combined with 3D image registration is a highly reproducible measure of cartilage quality in early stage OA. Therefore, dGEMRIC may be a valuable tool in the non-invasive evaluation of cartilage quality changes in longitudinal research in patients with early stage OA and focal cartilage defects.


Subject(s)
Cartilage, Articular/pathology , Gadolinium DTPA , Imaging, Three-Dimensional , Magnetic Resonance Imaging/methods , Osteoarthritis, Knee/diagnosis , Adult , Cohort Studies , Contrast Media , Female , Humans , Image Enhancement/methods , Male , Middle Aged , Prognosis , Reproducibility of Results , Sensitivity and Specificity , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...