Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Sci ; 30(11): 2310-2323, 2021 11.
Article in English | MEDLINE | ID: mdl-34562300

ABSTRACT

We report the crystal structure of the copper-containing nitrite reductase (NirK) from the Gram-negative bacterium Sinorhizobium meliloti 2011 (Sm), together with complex structural alignment and docking studies with both non-cognate and the physiologically related pseudoazurins, SmPaz1 and SmPaz2, respectively. S. meliloti is a rhizobacterium used for the formulation of Medicago sativa bionoculants, and SmNirK plays a key role in this symbiosis through the denitrification pathway. The structure of SmNirK, solved at a resolution of 2.5 Å, showed a striking resemblance with the overall structure of the well-known Class I NirKs composed of two Greek key ß-barrel domains. The activity of SmNirK is ~12% of the activity reported for classical NirKs, which could be attributed to several factors such as subtle structural differences in the secondary proton channel, solvent accessibility of the substrate channel, and that the denitrifying activity has to be finely regulated within the endosymbiont. In vitro kinetics performed in homogenous and heterogeneous media showed that both SmPaz1 and SmPaz2, which are coded in different regions of the genome, donate electrons to SmNirK with similar performance. Even though the energetics of the interprotein electron transfer (ET) process is not favorable with either electron donors, adduct formation mediated by conserved residues allows minimizing the distance between the copper centers involved in the interprotein ET process.


Subject(s)
Azurin/chemistry , Bacterial Proteins/chemistry , Nitrite Reductases/chemistry , Sinorhizobium meliloti/enzymology , Crystallography, X-Ray , Protein Domains
2.
IUCrJ ; 6(Pt 2): 248-258, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30867922

ABSTRACT

Dissimilatory nitrite reductases are key enzymes in the denitrification pathway, reducing nitrite and leading to the production of gaseous products (NO, N2O and N2). The reaction is catalysed either by a Cu-containing nitrite reductase (NirK) or by a cytochrome cd 1 nitrite reductase (NirS), as the simultaneous presence of the two enzymes has never been detected in the same microorganism. The thermophilic bacterium Thermus scotoductus SA-01 is an exception to this rule, harbouring both genes within a denitrification cluster, which encodes for an atypical NirK. The crystal structure of TsNirK has been determined at 1.63 Šresolution. TsNirK is a homotrimer with subunits of 451 residues that contain three copper atoms each. The N-terminal region possesses a type 2 Cu (T2Cu) and a type 1 Cu (T1CuN) while the C-terminus contains an extra type 1 Cu (T1CuC) bound within a cupredoxin motif. T1CuN shows an unusual Cu atom coordination (His2-Cys-Gln) compared with T1Cu observed in NirKs reported so far (His2-Cys-Met). T1CuC is buried at ∼5 Šfrom the molecular surface and located ∼14.1 Šaway from T1CuN; T1CuN and T2Cu are ∼12.6 Šapart. All these distances are compatible with an electron-transfer process T1CuC → T1CuN → T2Cu. T1CuN and T2Cu are connected by a typical Cys-His bridge and an unexpected sensing loop which harbours a SerCAT residue close to T2Cu, suggesting an alternative nitrite-reduction mechanism in these enzymes. Biophysicochemical and functional features of TsNirK are discussed on the basis of X-ray crystallography, electron paramagnetic resonance, resonance Raman and kinetic experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...