Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Microbiol ; 4(6): 1057-1064, 2019 06.
Article in English | MEDLINE | ID: mdl-30911125

ABSTRACT

Lack of reproducibility is a prominent problem in biomedical research. An important source of variation in animal experiments is the microbiome, but little is known about specific changes in the microbiota composition that cause phenotypic differences. Here, we show that genetically similar laboratory mice obtained from four different commercial vendors exhibited marked phenotypic variation in their susceptibility to Salmonella infection. Faecal microbiota transplant into germ-free mice replicated donor susceptibility, revealing that variability was due to changes in the gut microbiota composition. Co-housing of mice only partially transferred protection against Salmonella infection, suggesting that minority species within the gut microbiota might confer this trait. Consistent with this idea, we identified endogenous Enterobacteriaceae, a low-abundance taxon, as a keystone species responsible for variation in the susceptibility to Salmonella infection. Protection conferred by endogenous Enterobacteriaceae could be modelled by inoculating mice with probiotic Escherichia coli, which conferred resistance by using its aerobic metabolism to compete with Salmonella for resources. We conclude that a mechanistic understanding of phenotypic variation can accelerate development of strategies for enhancing the reproducibility of animal experiments.


Subject(s)
Enterobacteriaceae/physiology , Gastrointestinal Microbiome , Microbial Interactions/physiology , Salmonella Infections, Animal/microbiology , Animal Experimentation , Animals , Biomarkers , Biosynthetic Pathways , Disease Models, Animal , Enterobacteriaceae/classification , Escherichia coli/physiology , Fecal Microbiota Transplantation , Gastrointestinal Microbiome/genetics , Germ-Free Life , Mice , Mice, Inbred C57BL , Phenotype , Probiotics , Reproducibility of Results , Salmonella
2.
Cell Host Microbe ; 25(1): 128-139.e5, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30629913

ABSTRACT

Neonates are highly susceptible to infection with enteric pathogens, but the underlying mechanisms are not resolved. We show that neonatal chick colonization with Salmonella enterica serovar Enteritidis requires a virulence-factor-dependent increase in epithelial oxygenation, which drives pathogen expansion by aerobic respiration. Co-infection experiments with an Escherichia coli strain carrying an oxygen-sensitive reporter suggest that S. Enteritidis competes with commensal Enterobacteriaceae for oxygen. A combination of Enterobacteriaceae and spore-forming bacteria, but not colonization with either community alone, confers colonization resistance against S. Enteritidis in neonatal chicks, phenocopying germ-free mice associated with adult chicken microbiota. Combining spore-forming bacteria with a probiotic E. coli isolate protects germ-free mice from pathogen colonization, but the protection is lost when the ability to respire oxygen under micro-aerophilic conditions is genetically ablated in E. coli. These results suggest that commensal Enterobacteriaceae contribute to colonization resistance by competing with S. Enteritidis for oxygen, a resource critical for pathogen expansion.


Subject(s)
Enterobacteriaceae/growth & development , Enterobacteriaceae/physiology , Oxygen/metabolism , Salmonella/growth & development , Symbiosis , Animals , Animals, Newborn , Cecum/microbiology , Cecum/pathology , Chickens , Coinfection , Enterobacteriaceae/genetics , Escherichia coli , Female , Gastrointestinal Microbiome , Male , Mice , Probiotics , Salmonella/genetics , Salmonella/pathogenicity , Salmonella Infections, Animal , Salmonella enteritidis/growth & development , Salmonella enteritidis/pathogenicity , Spores, Bacterial/growth & development , Virulence Factors
3.
Methods Enzymol ; 612: 505-522, 2018.
Article in English | MEDLINE | ID: mdl-30502956

ABSTRACT

Dual RNA-seq has emerged as a genome-wide expression profiling technique, simultaneously measuring RNA transcript levels in a given host and its pathogen during an infection. Recently, the method was transferred from cell culture to in vivo models of bacterial infections; however, specific host cell-type resolution has not yet been achieved. Here we present a detailed protocol that describes the application of Dual RNA-seq to murine colonocytes isolated from mice infected with the enteric pathogen Salmonella Typhimurium. At day 5 after oral infection, the mice were humanely euthanized, their colons extracted, and colonocytes isolated and fixed. Upon antibody staining of cell type-specific surface markers, the fraction of Salmonella-invaded colonocytes was collected by fluorescence-activated cell sorting based on a fluorescent signal emitted by the internalized bacteria. Total RNA was extracted from cells enriched by this method, and ribosomal transcripts from host and microbial cells were removed prior to cDNA synthesis and library generation. We compared different protocols for library preparation and discuss their respective advantages and caveats when applied to minute RNA amounts that constitute an inherent challenge for in vivo transcriptomics. Our results introduce an ultralow input protocol that holds promise for cell type-specific in vivo Dual RNA-seq for charting gene expression of a bacterial pathogen within its respective in vivo niche, along with the consequent host response.


Subject(s)
Salmonella typhimurium/genetics , Sequence Analysis, RNA/methods , Gene Library , RNA, Bacterial/genetics
4.
FASEB J ; : fj201800370R, 2018 Jun 08.
Article in English | MEDLINE | ID: mdl-29882708

ABSTRACT

Dysregulated bile acid (BA) synthesis is accompanied by dysbiosis, leading to compromised metabolism. This study analyzes the effect of epigallocatechin-3-gallate (EGCG) on diet-induced obesity through regulation of BA signaling and gut microbiota. The data revealed that EGCG effectively reduced diet-increased obesity, visceral fat, and insulin resistance. Gene profiling data showed that EGCG had a significant impact on regulating genes implicated in fatty acid uptake, adipogenesis, and metabolism in the adipose tissue. In addition, metabolomics analysis revealed that EGCG altered the lipid and sugar metabolic pathways. In the intestine, EGCG reduced the FXR agonist chenodeoxycholic acid, as well as the FXR-regulated pathway, suggesting intestinal FXR deactivation. However, in the liver, EGCG increased the concentration of FXR and TGR-5 agonists and their regulated signaling. Furthermore, our data suggested that EGCG activated Takeda G protein receptor (TGR)-5 based on increased GLP-1 release and elevated serum PYY level. EGCG and antibiotics had distinct antibacterial effects. They also differentially altered body weight and BA composition. EGCG, but not antibiotics, increased Verrucomicrobiaceae, under which EGCG promoted intestinal bloom of Akkermansia muciniphila. Excitingly, A. muciniphila was as effective as EGCG in treating diet-induced obesity. Together, EGCG shifts gut microbiota and regulates BA signaling thereby having a metabolic beneficial effect.-Sheng, L., Jena, P. K., Liu, H.-X., Hu, Y., Nagar, N., Bronner, D. N., Settles, M. L., Bäumler, A. J. Wan, Y.-J. Y. Obesity treatment by epigallocatechin-3-gallate-regulated bile acid signaling and its enriched Akkermansia muciniphila.

5.
FEMS Microbiol Rev ; 42(4): 527-541, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29790924

ABSTRACT

Typhoid and paratyphoid fever are severe systemic infections caused by human-adapted typhoidal Salmonella serovars that are indistinguishable in their clinical presentation, but differ from human gastroenteritis caused by zoonotic non-typhoidal Salmonella serovars. Typhoidal Salmonella serovars evolved from ancestral gastrointestinal pathogens through genetic changes that supported a change in pathogen ecology. Typhoidal Salmonella serovars share virulence properties that were acquired through convergent evolution and therefore this group is not defined by the presence of shared virulence genes that are absent from non-typhoidal Salmonella serovars. One feature distinguishing typhoidal Salmonella serovars from gastrointestinal pathogens is their ability to avert the respiratory burst of neutrophils. Furthermore, typhoidal Salmonella serovars possess several mechanisms to moderate intestinal inflammation, which are absent from non-typhoidal Salmonella serovars. Collectively, these shared virulence mechanisms enable typhoidal Salmonella serovars to breach an intact mucosal barrier and reach the gall bladder, a new ecological niche that is important because chronic gall bladder carriage promotes disease transmission. Thus, the morbidity and mortality resulting from the severe systemic infection that enables typhoidal Salmonella serovars to reach the gall bladder is coupled to their capacity for infectious transmission, which is the principal driving force of natural selection directing the emergence of this pathovar.


Subject(s)
Biological Evolution , Host-Pathogen Interactions/physiology , Salmonella/physiology , Animals , Humans , Salmonella/pathogenicity , Serogroup , Typhoid Fever/microbiology
6.
Cell Host Microbe ; 23(2): 266-273.e4, 2018 Feb 14.
Article in English | MEDLINE | ID: mdl-29447698

ABSTRACT

Salmonella enterica serovar (S.) Typhi is an extraintestinal pathogen that evolved from Salmonella serovars causing gastrointestinal disease. Compared with non-typhoidal Salmonella serovars, the genomes of typhoidal serovars contain various loss-of-function mutations. However, the contribution of these genetic differences to this shift in pathogen ecology remains unknown. We show that the ydiQRSTD operon, which is deleted in S. Typhi, enables S. Typhimurium to utilize microbiota-derived butyrate during gastrointestinal disease. Unexpectedly, genetic ablation of butyrate utilization reduces S. Typhimurium epithelial invasion and attenuates intestinal inflammation. Deletion of ydiD renders S. Typhimurium sensitive to butyrate-mediated repression of invasion gene expression. Combined with the gain of virulence-associated (Vi) capsular polysaccharide and loss of very-long O-antigen chains, two features characteristic of S. Typhi, genetic ablation of butyrate utilization abrogates S. Typhimurium-induced intestinal inflammation. Thus, the transition from a gastrointestinal to an extraintestinal pathogen involved discrete genetic changes, providing insights into pathogen evolution and emergence.


Subject(s)
Butyrates/metabolism , Colitis/pathology , Salmonella Food Poisoning/pathology , Salmonella typhi/genetics , Salmonella typhimurium/genetics , Animals , Cell Line, Tumor , Clostridium/isolation & purification , Clostridium/pathogenicity , Colitis/microbiology , Escherichia coli , Female , Humans , Intestines/microbiology , Intestines/pathology , Mice , Mice, Inbred CBA , Salmonella Food Poisoning/microbiology , Salmonella typhi/pathogenicity , Salmonella typhimurium/pathogenicity , Type III Secretion Systems/genetics
7.
Bio Protoc ; 6(12)2016 Jun 20.
Article in English | MEDLINE | ID: mdl-31106234

ABSTRACT

Mitochondria house the metabolic machinery for cellular ATP production. The mitochondrial network is sensitive to perturbations (e.g., oxidative stress and pathogen invasion) that can alter membrane potential, thereby compromising function. Healthy mitochondria maintain high membrane potential due to oxidative phosphorylation (Ly et al., 2003). Changes in mitochondrial function or calcium levels can cause depolarization, or a sharp decrease in mitochondrial membrane potential (Bernardi, 2013). Mitochondrial depolarization induces opening of the mitochondrial permeability transition pore (MPTP), which allows release of mitochondrial components like reactive oxygen species (mtROS), mitochondrial DNA (mtDNA) or intermembrane space proteins into the cytosol (Martinou and Green, 2001; Tait and Green, 2010; Bronner and O'Riordan, 2014). These contents trigger inflammation, and can lead to cell death (West et al., 2011). Both mtROS and cytosolic mtDNA contribute to the activation of inflammasomes, multiprotein complexes that process the proinflammatory cytokines, IL-18 and IL-1ß. Studies indicate that cytosolic mtDNA in particular can bind two different inflammasome sensors, AIM2 and NLRP3, leading to inflammasome activation (Burckstummer et al., 2009; Hornung and Latz, 2010). In this protocol, you will be able to specifically extract cytosolic mtDNA and quantify the amount using a qPCR assay.

8.
Immunity ; 43(3): 451-62, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26341399

ABSTRACT

Endoplasmic reticulum (ER) stress is observed in many human diseases, often associated with inflammation. ER stress can trigger inflammation through nucleotide-binding domain and leucine-rich repeat containing (NLRP3) inflammasome, which might stimulate inflammasome formation by association with damaged mitochondria. How ER stress triggers mitochondrial dysfunction and inflammasome activation is ill defined. Here we have used an infection model to show that the IRE1α ER stress sensor regulates regulated mitochondrial dysfunction through an NLRP3-mediated feed-forward loop, independently of ASC. IRE1α activation increased mitochondrial reactive oxygen species, promoting NLRP3 association with mitochondria. NLRP3 was required for ER stress-induced cleavage of caspase-2 and the pro-apoptotic factor, Bid, leading to subsequent release of mitochondrial contents. Caspase-2 and Bid were necessary for activation of the canonical inflammasome by infection-associated or general ER stress. These data identify an NLRP3-caspase-2-dependent mechanism that relays ER stress to the mitochondria to promote inflammation, integrating cellular stress and innate immunity.


Subject(s)
Carrier Proteins/immunology , Caspase 2/immunology , Endoplasmic Reticulum Stress/immunology , Inflammasomes/immunology , Mitochondria/immunology , Animals , BH3 Interacting Domain Death Agonist Protein/genetics , BH3 Interacting Domain Death Agonist Protein/immunology , BH3 Interacting Domain Death Agonist Protein/metabolism , Blotting, Western , Brucella abortus/immunology , Brucella abortus/physiology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Caspase 2/genetics , Caspase 2/metabolism , Cells, Cultured , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , DNA-Binding Proteins/metabolism , Endoplasmic Reticulum Stress/genetics , Endoribonucleases/immunology , Endoribonucleases/metabolism , HEK293 Cells , Host-Pathogen Interactions/immunology , Humans , Inflammasomes/metabolism , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/genetics , Mitochondria/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Protein Serine-Threonine Kinases/immunology , Protein Serine-Threonine Kinases/metabolism , RNA Interference/immunology , Reactive Oxygen Species/immunology , Reactive Oxygen Species/metabolism , Regulatory Factor X Transcription Factors , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/genetics , Transcription Factors/immunology , Transcription Factors/metabolism
9.
EMBO J ; 33(19): 2137-9, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25180233

ABSTRACT

Release of mitochondrial contents often triggers inflammation and cell death, and modulating this process can be advantageous to invading pathogens. In this issue of The EMBO Journal, Andree and colleagues reveal new findings that an intracellular bacterial pathogen exploits apoptotic machinery to suppress host immune signaling, yet avoids cell death. This study emphasizes the need to expand our understanding of the roles played by pro­apoptotic proteins in non­death scenarios.


Subject(s)
BH3 Interacting Domain Death Agonist Protein/physiology , Carrier Proteins/metabolism , Dysentery, Bacillary/immunology , Mitochondria/immunology , Mitochondrial Proteins/metabolism , Shigella/immunology , X-Linked Inhibitor of Apoptosis Protein/physiology , Animals , Apoptosis Regulatory Proteins , Female , Male
10.
Article in English | MEDLINE | ID: mdl-24350060

ABSTRACT

Programmed cell death (PCD) can play a crucial role in tuning the immune response to microbial infection. Although PCD can occur in different forms, all are mediated by a family of proteases called caspases. Caspase-2 is the most conserved caspase, however, its function in cell death is ill-defined. Previously we demonstrated that live attenuated cattle vaccine strain Brucella abortus RB51 induces caspase-2-mediated and caspase-1-independent PCD of infected macrophages. We also discovered that rough attenuated B. suis strain VTRS1 induces a caspase-2-mediated and caspase-1-independent proinflammatory cell death in infected macrophages, which was tentatively coined "caspase-2-mediated pyroptosis". However, the mechanism of caspase-2-mediated cell death pathway remained unclear. In this study, we found that caspase-2 mediated proinflammatory cell death of RB51-infected macrophages and regulated many genes in different PCD pathways. We show that the activation of proapoptotic caspases-3 and -8 was dependent upon caspase-2. Caspase-2 regulated mitochondrial cytochrome c release and TNFα production, both of which are known to activate caspase-3 and caspase-8, respectively. In addition to TNFα, RB51-induced caspase-1 and IL-1ß production was also driven by caspase-2-mediated mitochondrial dysfunction. Interestingly, pore formation, a phenomenon commonly associated with caspase-1-mediated pyroptosis, occurred; however, unlike its role in S. typhimurium-induced pyroptosis, pore formation did not contribute to RB51-induced proinflammatory cell death. Our data suggest that caspase-2 acts as an initiator caspase that mediates a novel RB51-induced hybrid cell death that simulates but differs from typical non-proinflammatory apoptosis and caspase-1-mediated proinflammatory pyroptosis. The initiator role of the caspase-2-mediated cell death was also conserved in cellular stress-induced cell death of macrophages treated with etoposide, naphthalene, or anti-Fas. Caspase-2 also regulated caspase-3 and -8 activation, as well as cell death in macrophages treated with each of the three reagents. Taken together, our data has demonstrated that caspase-2 can play an important role in mediating a proinflammatory response and a hybrid cell death that demonstrates features of both apoptosis and pyroptosis.


Subject(s)
Apoptosis , Brucella abortus/immunology , Caspase 2/metabolism , Macrophages/immunology , Macrophages/microbiology , Animals , Caspase 3/metabolism , Caspase 8/metabolism , Cells, Cultured , Cytochromes c/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/enzymology
11.
BMC Bioinformatics ; 14 Suppl 6: S3, 2013.
Article in English | MEDLINE | ID: mdl-23735014

ABSTRACT

BACKGROUND: Vaccine protection investigation includes three processes: vaccination, pathogen challenge, and vaccine protection efficacy assessment. Many variables can affect the results of vaccine protection. Brucella, a genus of facultative intracellular bacteria, is the etiologic agent of brucellosis in humans and multiple animal species. Extensive research has been conducted in developing effective live attenuated Brucella vaccines. We hypothesized that some variables play a more important role than others in determining vaccine protective efficacy. Using Brucella vaccines and vaccine candidates as study models, this hypothesis was tested by meta-analysis of Brucella vaccine studies reported in the literature. RESULTS: Nineteen variables related to vaccine-induced protection of mice against infection with virulent brucellae were selected based on modeling investigation of the vaccine protection processes. The variable "vaccine protection efficacy" was set as a dependent variable while the other eighteen were set as independent variables. Discrete or continuous values were collected from papers for each variable of each data set. In total, 401 experimental groups were manually annotated from 74 peer-reviewed publications containing mouse protection data for live attenuated Brucella vaccines or vaccine candidates. Our ANOVA analysis indicated that nine variables contributed significantly (P-value < 0.05) to Brucella vaccine protection efficacy: vaccine strain, vaccination host (mouse) strain, vaccination dose, vaccination route, challenge pathogen strain, challenge route, challenge-killing interval, colony forming units (CFUs) in mouse spleen, and CFU reduction compared to control group. The other 10 variables (e.g., mouse age, vaccination-challenge interval, and challenge dose) were not found to be statistically significant (P-value > 0.05). The protection level of RB51 was sacrificed when the values of several variables (e.g., vaccination route, vaccine viability, and challenge pathogen strain) change. It is suggestive that it is difficult to protect against aerosol challenge. Somewhat counter-intuitively, our results indicate that intraperitoneal and subcutaneous vaccinations are much more effective to protect against aerosol Brucella challenge than intranasal vaccination. CONCLUSIONS: Literature meta-analysis identified variables that significantly contribute to Brucella vaccine protection efficacy. The results obtained provide critical information for rational vaccine study design. Literature meta-analysis is generic and can be applied to analyze variables critical for vaccine protection against other infectious diseases.


Subject(s)
Brucella Vaccine/administration & dosage , Brucella/physiology , Brucellosis/immunology , Analysis of Variance , Animals , Brucella/immunology , Brucella Vaccine/immunology , Brucellosis/microbiology , Brucellosis/prevention & control , Computational Biology/methods , Female , Humans , Mice , Mice, Inbred BALB C , Models, Animal , Vaccines, Attenuated/immunology
12.
J Exp Zool B Mol Dev Evol ; 318(5): 368-87, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22711569

ABSTRACT

Functional studies of the methuselah/methuselah-like (mth/mthl) gene family have focused on the founding member mth, but little is known regarding the developmental functions of this receptor or any of its paralogs. We undertook a comprehensive analysis of developmental expression and sequence divergence in the mth/mthl gene family. Using in situ hybridization techniques, we detect expression of six genes (mthl1, 5, 9, 11, 13, and 14) in the embryo during gastrulation and development of the gut, heart, and lymph glands. Four receptors (mthl3, 4, 6, and 8) are expressed in the larval central nervous system, imaginal discs, or both, and two receptors (mthl10 and mth) are expressed in both embryos and larvae. Phylogenetic analysis of all mth/mthl genes in five Drosophila species, mosquito and flour beetle structured the mth/mthl family into several subclades. mthl1, 5, and 14 are present in most species, each forming a separate clade. A newly identified Drosophila mthl gene (CG31720; herein mthl15) formed another ancient clade. The remaining Drosophila receptors, including mth, are members of a large "superclade" that diversified relatively recently during dipteran evolution, in many cases within the melanogaster subgroup. Comparing the expression patterns of the mth/mthl "superclade" paralogs to the embryonic expression of the singleton ortholog in Tribolium suggests both subfunctionalization and acquisition of novel functionalities. Taken together, our findings shed novel light on mth as a young member of an adaptively evolving developmental gene family.


Subject(s)
Adaptation, Biological/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Evolution, Molecular , Gene Expression Regulation, Developmental/genetics , Multigene Family/genetics , Phylogeny , Receptors, G-Protein-Coupled/genetics , Adaptation, Biological/physiology , Animals , Bayes Theorem , Computational Biology , Gene Expression Profiling , Gene Expression Regulation, Developmental/physiology , In Situ Hybridization , Models, Genetic , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...