Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 29(16): 2294-2301, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31307887

ABSTRACT

CDK4 and CDK6 are kinases with similar sequences that regulate cell cycle progression and are validated targets in the treatment of cancer. Glioblastoma is characterized by a high frequency of CDKN2A/CCND2/CDK4/CDK6 pathway dysregulation, making dual inhibition of CDK4 and CDK6 an attractive therapeutic approach for this disease. Abemaciclib, ribociclib, and palbociclib are approved CDK4/6 inhibitors for the treatment of HR+/HER2- breast cancer, but these drugs are not expected to show strong activity in brain tumors due to poor blood brain barrier penetration. Herein, we report the identification of a brain-penetrant CDK4/6 inhibitor derived from a literature molecule with low molecular weight and topological polar surface area (MW = 285 and TPSA = 66 Å2), but lacking the CDK2/1 selectivity profile due to the absence of a basic amine. Removal of a hydrogen bond donor via cyclization of the pyrazole allowed for the introduction of basic and semi-basic amines, while maintaining in many cases efflux ratios reasonable for a CNS program. Ultimately, a basic spiroazetidine (cpKa = 8.8) was identified that afforded acceptable selectivity over anti-target CDK1 while maintaining brain-penetration in vivo (mouse Kp,uu = 0.20-0.59). To probe the potency and selectivity, our lead compound was evaluated in a panel of glioblastoma cell lines. Potency comparable to abemaciclib was observed in Rb-wild type lines U87MG, DBTRG-05MG, A172, and T98G, while Rb-deficient cell lines SF539 and M059J exhibited a lack of sensitivity.


Subject(s)
Antineoplastic Agents/pharmacology , Brain Neoplasms/drug therapy , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Drug Design , Glioblastoma/drug therapy , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , MCF-7 Cells , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
2.
Expert Opin Ther Pat ; 28(12): 867-873, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30482112

ABSTRACT

Introduction: The Hippo pathway represents a new and intriguing opportunity for the treatment of cancer. Activation or overexpression of Yes-associated protein (YAP) or transcriptional coactivator with PDZ-binding motif (TAZ) has been shown to lead to cell transformation and tumor development. To date, no small molecule compounds targeting this pathway have progressed to the clinic, illustrating both its potential and its infancy. Areas covered: The present review seeks to summarize published patent applications from assignee companies that have disclosed direct small molecule inhibitors of the YAP/TAZ-transcriptional enhanced associate domain (TEAD) interaction. Expert opinion: The Hippo pathway, and specifically the YAP/TAZ-TEAD transcriptional complex, has been shown to be a promising target for the treatment of cancer. However, reports in the area of small molecules targeting the YAP/TAZ-TEAD transcriptional activation complex are few and far between, with only two published patent applications that disclose compounds with moderate levels of pathway inhibition. Interestingly, the YAP/TAZ-TEAD complex can be disrupted through two very different mechanisms, one of which is direct inhibition at either the Ω-loop or the α-helix of the YAP-TEAD binding interface. Both YAP protein segments have been shown to be important to TEAD binding. Alternatively, it has been reported that allosteric inhibition might be accomplished by binding the TEAD palmitoylation pocket, thus disrupting YAP binding and also native protein stabilization. The advantages and liabilities of disrupting the YAP/TAZ-TEAD complex through these two distinct mechanisms have yet to be fully elucidated, and it remains unclear which approach, if any, will generate the first clinical stage inhibitor of the Hippo pathway.


Subject(s)
Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Protein Serine-Threonine Kinases/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/metabolism , Drug Design , Hippo Signaling Pathway , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Neoplasms/pathology , Patents as Topic , Phosphoproteins/metabolism , Signal Transduction/drug effects , Trans-Activators , Transcription Factors/metabolism , Transcriptional Coactivator with PDZ-Binding Motif Proteins , YAP-Signaling Proteins
3.
Bioorg Med Chem Lett ; 28(1): 15-23, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29169673

ABSTRACT

A novel, potent, and orally bioavailable inhibitor of the bromodomain of CBP, compound 35 (GNE-207), has been identified through SAR investigations focused on optimizing al bicyclic heteroarene to replace the aniline present in the published GNE-272 series. Compound 35 has excellent CBP potency (CBP IC50 = 1 nM, MYC EC50 = 18 nM), a selectively index of >2500-fold against BRD4(1), and exhibits a good pharmacokinetic profile.


Subject(s)
Biphenyl Compounds/chemistry , Drug Design , p300-CBP Transcription Factors/antagonists & inhibitors , Animals , Binding Sites , Biphenyl Compounds/chemical synthesis , Biphenyl Compounds/metabolism , Cell Cycle Proteins , Crystallography, X-Ray , Half-Life , Humans , Hydrogen Bonding , Inhibitory Concentration 50 , Mice , Microsomes, Liver/metabolism , Molecular Dynamics Simulation , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/metabolism , Protein Structure, Tertiary , Rats , Structure-Activity Relationship , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , p300-CBP Transcription Factors/metabolism
4.
J Med Chem ; 60(24): 10151-10171, 2017 12 28.
Article in English | MEDLINE | ID: mdl-29155580

ABSTRACT

The epigenetic regulator CBP/P300 presents a novel therapeutic target for oncology. Previously, we disclosed the development of potent and selective CBP bromodomain inhibitors by first identifying pharmacophores that bind the KAc region and then building into the LPF shelf. Herein, we report the "hybridization" of a variety of KAc-binding fragments with a tetrahydroquinoline scaffold that makes optimal interactions with the LPF shelf, imparting enhanced potency and selectivity to the hybridized ligand. To demonstrate the utility of our hybridization approach, two analogues containing unique Asn binders and the optimized tetrahydroquinoline moiety were rapidly optimized to yield single-digit nanomolar inhibitors of CBP with exquisite selectivity over BRD4(1) and the broader bromodomain family.


Subject(s)
High-Throughput Screening Assays/methods , p300-CBP Transcription Factors/antagonists & inhibitors , Animals , Asparagine/chemistry , Asparagine/metabolism , Binding Sites , Cell Cycle Proteins , Crystallography, X-Ray , Female , Fluorescence Resonance Energy Transfer/methods , Mice, Inbred Strains , Molecular Docking Simulation , Nuclear Proteins/antagonists & inhibitors , Protein Domains , Pyrazoles/chemistry , Pyridines/chemistry , Quinolines/chemistry , Transcription Factors/antagonists & inhibitors , p300-CBP Transcription Factors/chemistry , p300-CBP Transcription Factors/metabolism
5.
J Med Chem ; 60(22): 9162-9183, 2017 11 22.
Article in English | MEDLINE | ID: mdl-28892380

ABSTRACT

Inhibition of the bromodomain of the transcriptional regulator CBP/P300 is an especially interesting new therapeutic approach in oncology. We recently disclosed in vivo chemical tool 1 (GNE-272) for the bromodomain of CBP that was moderately potent and selective over BRD4(1). In pursuit of a more potent and selective CBP inhibitor, we used structure-based design. Constraining the aniline of 1 into a tetrahydroquinoline motif maintained potency and increased selectivity 2-fold. Structure-activity relationship studies coupled with further structure-based design targeting the LPF shelf, BC loop, and KAc regions allowed us to significantly increase potency and selectivity, resulting in the identification of non-CNS penetrant 19 (GNE-781, TR-FRET IC50 = 0.94 nM, BRET IC50 = 6.2 nM; BRD4(1) IC50 = 5100 nΜ) that maintained good in vivo PK properties in multiple species. Compound 19 displays antitumor activity in an AML tumor model and was also shown to decrease Foxp3 transcript levels in a dose dependent manner.


Subject(s)
Antineoplastic Agents/pharmacology , CREB-Binding Protein/antagonists & inhibitors , Pyrazoles/pharmacology , Pyridines/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , CREB-Binding Protein/chemistry , Dogs , Female , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , HEK293 Cells , Humans , Macaca fascicularis , Male , Mice , Protein Domains , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics , Pyridines/chemical synthesis , Pyridines/chemistry , Pyridines/pharmacokinetics , RNA/genetics , Rats, Sprague-Dawley , Structure-Activity Relationship , Xenograft Model Antitumor Assays
6.
Expert Opin Ther Pat ; 27(1): 101-112, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27629281

ABSTRACT

INTRODUCTION: The transcription factor RORγ plays a critical role in the expression of pro-inflammatory cytokine interleukin IL-17 and is therefore an attractive target for the treatment of inflammatory diseases. Interest in this molecular target has been heightened by the advancement of orally and topically administered RORγ modulators into clinical trials. Areas covered: The present review seeks to summarize published patent applications from assignee companies that have disclosed Investigational New Drug (IND) filings for small molecule RORγ/RORγt antagonists and inverse agonists. Expert opinion: The field of RORγ research is extremely competitive, with the majority of companies targeting psoriasis as the primary disease indication. Vitae Pharmaceuticals is currently the most advanced, with a potential first-in-class oral RORγ-modulator for the treatment of psoriasis. Future efforts will likely expand into potential applications of RORγ-modulators in the lesser explored immune-related areas of rheumatoid arthritis, type 1 diabetes, lupus, and irritable bowel disorder, as well as cancer immunotherapy and castration-resistant prostate cancer.


Subject(s)
Drug Design , Interleukin-17/immunology , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Animals , Drug Inverse Agonism , Humans , Immunotherapy/methods , Inflammation/drug therapy , Inflammation/pathology , Molecular Targeted Therapy , Patents as Topic , Psoriasis/drug therapy , Psoriasis/pathology
7.
Org Lett ; 18(24): 6448-6451, 2016 12 16.
Article in English | MEDLINE | ID: mdl-27978674

ABSTRACT

A transition-metal-free methodology for the construction of pharmaceutically relevant tertiary aminocyclopropanes is reported. Hydrazonamides, safe and stable carbene precursors, undergo smooth cyclopropanation with vinyl arenes in the presence of a base. The reaction proceeds with stereoselectivity to favor the Z isomer and provides facile access to a variety of substitution patterns through variation of the coupling partners.

8.
Bioorg Med Chem Lett ; 26(18): 4387-4393, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27542308

ABSTRACT

The retinoic acid receptor-related orphan receptor RORγ plays key roles in the development and differentiation of TH17 cells, and thus in IL-17 expression, thymocyte development and regulation of metabolism. With the recent progression into phase 2 clinical trials of both oral and topically administered inverse agonists, and with others close behind, there is significant interest in the discovery of RORγ modulators. This digest covers key developments around RORγ agonists, antagonists and inverse agonists; orthosteric and allosteric binders; and aims to summarize the available information concerning the potential utility of RORγ modulators.


Subject(s)
Cell Nucleus/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Animals , Cell Differentiation , Interleukin-17/metabolism , Mice , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Structure-Activity Relationship , T-Lymphocytes, Helper-Inducer/metabolism
9.
Chem Sci ; 5(10): 4091-4098, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25346842

ABSTRACT

A series of cyclometalated Z-selective ruthenium olefin metathesis catalysts with alterations to the N-heterocyclic carbene (NHC) ligand were prepared. X-Ray crystal structures of several new catalysts were obtained, elucidating the structural features of this class of cyclometalated complexes. The metathesis activity of each stable complex was evaluated, and one catalyst, bearing geminal dimethyl backbone substitution, was found to be comparable to our best Z-selective metathesis catalyst to date.

10.
Chem Sci ; 5(6): 2184-2190, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24839542

ABSTRACT

We report the total syntheses of (-)-indolactam V and the C7-substituted indolactam alkaloids (-)-pendolmycin, (-)-lyngbyatoxin A, and (-)-teleocidin A-2. The strategy for preparing indolactam V relies on a distortion-controlled indolyne functionalization reaction to establish the C4-N linkage, in addition to an intramolecular conjugate addition to build the conformationally-flexible nine-membered ring. The total synthesis of indolactam V then sets the stage for the divergent synthesis of the other targeted alkaloids. Specifically, late-stage sp2-sp3 cross-couplings on an indolactam V derivative are used to introduce the key C7 substituents and the necessary quaternary carbons. These challenging couplings, in addition to other delicate manipulations, all proceed in the presence of a basic tertiary amine, an unprotected secondary amide, and an unprotected indole. Thus, our approach not only enables the enantiospecific total syntheses of four indolactam alkaloids, but also serves as a platform for probing complexity-generating and chemoselective transformations in the context of alkaloid total synthesis.

11.
Chem Sci ; 5(1)2014 Jan.
Article in English | MEDLINE | ID: mdl-24327829

ABSTRACT

A new strategy to access linear amines from terminal olefin precursors is reported. This two-step, one-pot hydroamination methodology employs sequential oxidation and reduction catalytic cycles. The formal hydroamination transformation proceeds with excellent regioselectivity, and only the anti-Markovnikov product is observed. Up to 70% yield can be obtained from styrenes or aliphatic olefins and either primary or secondary aromatic amines. Additionally, the scope is broad with respect to the olefin and accommodates a variety of functionalities; we demonstrate that amines with removable aryl protecting groups may be utilized to allow access to a more diverse array of hydroamination adducts.

12.
J Am Chem Soc ; 134(34): 13966-9, 2012 Aug 29.
Article in English | MEDLINE | ID: mdl-22876797

ABSTRACT

We report an experimental and computational study of 3-silylarynes. The addition of nucleophiles yield ortho-substituted products as a result of aryne distortion, but meta-substituted products form predominately when the nucleophile is large. Computations correctly predict the preferred site of attack observed in both nucleophilic addition and cycloaddition experiments. Nucleophilic additions to 3-tert-butylbenzyne, which is not significantly distorted, give meta-substituted products.


Subject(s)
Benzene Derivatives/chemistry , Organosilicon Compounds/chemistry , Cycloaddition Reaction , Models, Molecular , Stereoisomerism
13.
Angew Chem Int Ed Engl ; 51(11): 2758-62, 2012 Mar 12.
Article in English | MEDLINE | ID: mdl-22307724

ABSTRACT

Think before you act: a computational approach is reported for evaluating the synthetic potential of heterocyclic arynes. Routine and rapid calculations of arene dehydrogenation energies and aryne angle distortion predict the likelihood that a given hetaryne can be generated, as well as the degree of regioselectivity expected in a reaction between a given hetaryne and a nucleophilic trapping agent.


Subject(s)
Heterocyclic Compounds/chemical synthesis , Combinatorial Chemistry Techniques , Heterocyclic Compounds/chemistry , Stereoisomerism
14.
J Am Chem Soc ; 133(11): 3832-5, 2011 Mar 23.
Article in English | MEDLINE | ID: mdl-21351773

ABSTRACT

We report the design and synthesis of an indolyne that displays a reversal in regioselectivity, in both nucleophilic addition and cycloaddition reactions, compared to typical 4,5-indolynes. Our approach utilizes simple computations to predict regioselectivity in reactions of unsymmetrical arynes. With this methodology, novel benzenoid-substituted indoles can be accessed with significant regiocontrol. Furthermore, the technology provides an unconventional tactic for the synthesis of C4-substituted indole alkaloids, as demonstrated by a synthesis of indolactam V.


Subject(s)
Indoles/chemical synthesis , Lactams/chemical synthesis , Models, Molecular
15.
J Am Chem Soc ; 132(50): 17933-44, 2010 Dec 22.
Article in English | MEDLINE | ID: mdl-21114321

ABSTRACT

Efficient syntheses of 4,5-, 5,6-, and 6,7-indolyne precursors beginning from commercially available hydroxyindole derivatives are reported. The synthetic routes are versatile and allow access to indolyne precursors that remain unsubstituted on the pyrrole ring. Indolynes can be generated under mild fluoride-mediated conditions, trapped by a variety of nucleophilic reagents, and used to access a number of novel substituted indoles. Nucleophilic addition reactions to indolynes proceed with varying degrees of regioselectivity; distortion energies control regioselectivity and provide a simple model to predict the regioselectivity in the nucleophilic additions to indolynes and other unsymmetrical arynes. This model has led to the design of a substituted 4,5-indolyne that exhibits enhanced nucleophilic regioselectivity.


Subject(s)
Computer Simulation , Indoles/chemistry , Indoles/chemical synthesis , Molecular Structure
16.
J Am Chem Soc ; 132(4): 1267-9, 2010 Feb 03.
Article in English | MEDLINE | ID: mdl-20058924

ABSTRACT

Density functional theory computations reproduce the surprisingly high regioselectivities in nucleophilic additions and cycloadditions to 4,5-indolynes and the low regioselectivities in the reactions of 5,6-indolynes. Transition-state distortion energies control the regioselectivities, activating the 5 and 6 positions over the 4 and 7 positions, leading to high preferences for 5- and 6-substituted products from 4,5- and 6,7-indolynes, respectively. Orbital and electrostatic interactions have only minor effects, producing low regioselectivities in the reactions of 5,6-indolynes. The distortion model predicts high regioselectivities with 6,7-indolynes; these have been verified experimentally. The regioselectivities found with other arynes are explained on the basis of distortion energies that are reflected in reactant geometries.


Subject(s)
Hydrocarbons, Aromatic/chemistry , Indoles/chemistry , Models, Chemical , Models, Molecular , Molecular Structure , Quantum Theory , Stereoisomerism , Thermodynamics
17.
J Org Chem ; 74(22): 8842-3, 2009 Nov 20.
Article in English | MEDLINE | ID: mdl-19852458

ABSTRACT

An efficient procedure for the gram-scale preparation of 2-(trimethylsilyl)phenyl trifluoromethanesulfonate, a versatile precursor to o-benzyne, is presented. The three-step sequence utilizes phenol as the starting material, requires only one chromatographic purification, and ultimately delivers the desired silyltriflate in 66% overall yield.

18.
Org Lett ; 11(4): 1007-10, 2009 Feb 19.
Article in English | MEDLINE | ID: mdl-19178159

ABSTRACT

A mild method to access a variety of substituted indole derivatives has been developed. The strategy relies on the generation of highly reactive indolyne intermediates, which function as electrophilic indole surrogates.


Subject(s)
Combinatorial Chemistry Techniques , Indoles/chemistry , Indoles/chemical synthesis , Catalysis , Models, Molecular , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...