Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 586(7830): E29, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33005054

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nature ; 584(7820): 227-233, 2020 08.
Article in English | MEDLINE | ID: mdl-32788734

ABSTRACT

Anthropogenic global surface warming is proportional to cumulative carbon emissions1-3; this relationship is partly determined by the uptake and storage of heat and carbon by the ocean4. The rates and patterns of ocean heat and carbon storage are influenced by ocean transport, such as mixing and large-scale circulation5-10. However, existing climate models do not accurately capture the observed patterns of ocean warming, with a large spread in their projections of ocean circulation and ocean heat uptake8,11. Additionally, assessing the influence of ocean circulation changes (specifically, the redistribution of heat by resolved advection) on patterns of observed and simulated ocean warming remains a challenge. Here we establish a linear relationship between the heat and carbon uptake of the ocean in response to anthropogenic emissions. This relationship is determined mainly by intrinsic parameters of the Earth system-namely, the ocean carbon buffer capacity, the radiative forcing of carbon dioxide and the carbon inventory of the ocean. We use this relationship to reveal the effect of changes in ocean circulation from carbon dioxide forcing on patterns of ocean warming in both observations and global Earth system models from the Fifth Coupled Model Intercomparison Project (CMIP5). We show that historical patterns of ocean warming are shaped by ocean heat redistribution, which CMIP5 models simulate poorly. However, we find that projected patterns of heat storage are primarily dictated by the pre-industrial ocean circulation (and small changes in unresolved ocean processes)-that is, by the patterns of added heat owing to ocean uptake of excess atmospheric heat rather than ocean warming by circulation changes. Climate models show more skill in simulating ocean heat storage by the pre-industrial circulation compared to heat redistribution, indicating that warming patterns of the ocean may become more predictable as the climate warms.


Subject(s)
Carbon Dioxide/analysis , Global Warming , Hot Temperature , Oceans and Seas , Seawater/analysis , Seawater/chemistry , Water Movements , Atmosphere/chemistry , Human Activities
3.
Nature ; 564(7734): 53-58, 2018 12.
Article in English | MEDLINE | ID: mdl-30455421

ABSTRACT

Meltwater from the Antarctic Ice Sheet is projected to cause up to one metre of sea-level rise by 2100 under the highest greenhouse gas concentration trajectory (RCP8.5) considered by the Intergovernmental Panel on Climate Change (IPCC). However, the effects of meltwater from the ice sheets and ice shelves of Antarctica are not included in the widely used CMIP5 climate models, which introduces bias into IPCC climate projections. Here we assess a large ensemble simulation of the CMIP5 model 'GFDL ESM2M' that accounts for RCP8.5-projected Antarctic Ice Sheet meltwater. We find that, relative to the standard RCP8.5 scenario, accounting for meltwater delays the exceedance of the maximum global-mean atmospheric warming targets of 1.5 and 2 degrees Celsius by more than a decade, enhances drying of the Southern Hemisphere and reduces drying of the Northern Hemisphere, increases the formation of Antarctic sea ice (consistent with recent observations of increasing Antarctic sea-ice area) and warms the subsurface ocean around the Antarctic coast. Moreover, the meltwater-induced subsurface ocean warming could lead to further ice-sheet and ice-shelf melting through a positive feedback mechanism, highlighting the importance of including meltwater effects in simulations of future climate.


Subject(s)
Freezing , Global Warming/statistics & numerical data , Ice Cover/chemistry , Seawater/analysis , Air , Antarctic Regions , Atmosphere , Hot Temperature , Oceans and Seas , Rain
SELECTION OF CITATIONS
SEARCH DETAIL
...