Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Cardiovasc Comput Tomogr ; 14(6): 510-515, 2020.
Article in English | MEDLINE | ID: mdl-32354625

ABSTRACT

BACKGROUND: To investigate the performance of a reconstruction algorithm, single-energy metal artifact reduction (SEMAR), against standard reconstruction in cardiac computed tomography (CT) studies of patients with implanted metal and in a defibrillator lead phantom. METHODS: From a retrospective, cross-sectional clinical study with institutional review board approval of 118 patients with implanted metal, 122 cardiac CT studies from November 2009 to August 2016 performed on a 320-detector row scanner with standard and SEMAR reconstructions were included. The maximum beam hardening artifact radius, artifact attenuation variation surrounding the implanted metal, and image quality on a 4-point scale (1-no/minimal artifact to 4-severe artifact) were assessed for each reconstruction. A defibrillator lead phantom study was performed at different tube potentials and currents with both reconstruction methods. Maximum beam hardening artifact radius and average artifact attenuation variation were measured. RESULTS: In the clinical study, SEMAR markedly reduced the maximum beam hardening artifact radius by 77% (standard: 14.8 mm [IQR 9.7-22.2] vs. SEMAR: 3.4 mm [IQR 2.2-7.1], p < 0.0001) and artifact attenuation variation by 51% (standard: 130.0 HU [IQR 75.9-184.4] vs. SEMAR: 64.3 HU [IQR 48.2-89.2], p < 0.0001). Image quality improved with SEMAR (standard: 3 [IQR 2-3.5] vs. SEMAR: 2 [IQR 1-2.5], p < 0.0001). The defibrillator lead phantom study confirmed these results across varying tube potentials and currents. CONCLUSIONS: SEMAR reconstruction achieved superior image quality and markedly reduced maximum beam hardening artifact radius and artifact attenuation variation compared to standard reconstruction in 122 clinical cardiac CT studies of patients with implanted metal and in a defibrillator lead phantom study.


Subject(s)
Artifacts , Computed Tomography Angiography/instrumentation , Coronary Angiography/instrumentation , Metals , Phantoms, Imaging , Adult , Aged , Algorithms , Cross-Sectional Studies , Defibrillators, Implantable , Female , Heart Valve Prosthesis , Humans , Male , Middle Aged , Pacemaker, Artificial , Predictive Value of Tests , Prosthesis Design , Radiographic Image Interpretation, Computer-Assisted , Reproducibility of Results , Retrospective Studies
2.
J Comput Assist Tomogr ; 43(5): 805-810, 2019.
Article in English | MEDLINE | ID: mdl-31490890

ABSTRACT

OBJECTIVE: The objective of this study was to evaluate a prototype, ultrahigh-resolution computed tomography offering higher reconstruction matrix (1024 × 1024) and spatial resolution (0.15 mm) for chest imaging. METHODS: Higher (1024) matrix reconstruction enabled by ultrahigh-resolution computed tomography scanner (128-detector rows; detector width, 0.25 mm; spatial resolution, 0.15 mm) was compared with conventional (512) reconstruction with image quality grading on a Likert scale (1, excellent; 5, nondiagnostic) for image noise, artifacts, contrast, small detail, lesion conspicuity, image sharpness, and diagnostic confidence. Image noise and signal-to-noise ratio were quantified. RESULTS: Diagnostic image quality was achieved for all scans on 101 patients. The 1024 reconstruction demonstrated increased image noise (20.2 ± 4.0 vs 17.2 ± 3.8, P < 0.001) and a worse noise rating (1.98 ± 0.63 vs 1.75 ± 0.61, P < 0.001) but performed significantly better than conventional 512 matrix with fewer artifacts (1.37 ± 0.43 vs 1.50 ± 0.48, P < 0.001), better contrast (1.50 ± 0.56 vs 1.62 ± 0.57, P < 0.001), small detail detection (1.06 ± 0.19 vs 2.02 ± 0.22, P < 0.001), lesion conspicuity (1.08 ± 0.23 vs 2.02 ± 0.24, P < 0.001), sharpness (1.09 ± 0.24 vs 2.02 ± 0.28, P < 0.001), and overall diagnostic confidence (1.09 ± 0.25 vs 1.18 ± 0.34, P < 0.001). CONCLUSIONS: Ultrahigh-resolution computed tomography enabled a higher reconstruction matrix and improved image quality compared with conventional matrix reconstruction, with a minor increase in noise.


Subject(s)
Radiographic Image Interpretation, Computer-Assisted/methods , Radiography, Thoracic/instrumentation , Tomography Scanners, X-Ray Computed , Adolescent , Adult , Aged , Aged, 80 and over , Artifacts , Contrast Media , Female , Humans , Male , Middle Aged , Prospective Studies , Signal-To-Noise Ratio
3.
Eur J Radiol ; 111: 1-5, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30691659

ABSTRACT

Assessing coronary artery calcium (CAC) is a valuable tool for individualizing cardiac risk assessment. In CAC scanning, this technical report assesses the use of a true model-based iterative reconstruction algorithm using forward projected model-based iterative reconstruction ("FIRST") and assess whether FIRST allows for reduced radiation dose CAC scanning on 320-detector row computed tomography (320-CT). Here, 100 consecutive patients prospectively underwent reduced and standard dose scans. For the patients (59 ± 9 years, 61% male) stratified by Agatston categories 0, 1-10, 11-100, 101-400,> 400, agreement between reduced dose with FIRST versus standard dose with FBP was excellent at 81% (95% CI: 73-88%) with kappa 0.74 (95% CI: 0.64-0.85). Median radiation exposure was 75% lower for reduced (0.35 mSv) versus standard dose (1.37 mSv) scans. In conclusion, agreement was excellent for reduced dose with FIRST and standard dose with FBP in 320-detector row CT CAC imaging in well-established categories of cardiovascular risk. These methods make it possible to reduce radiation exposure by 75%.


Subject(s)
Coronary Artery Disease/diagnostic imaging , Tomography, X-Ray Computed , Vascular Calcification/diagnostic imaging , Algorithms , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Prospective Studies , Radiation Dosage , Risk Assessment , Tomography, X-Ray Computed/methods
4.
Int J Cardiol ; 228: 180-183, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27865183

ABSTRACT

BACKGROUND: The use of cardiac computed tomography (CT) in the evaluation of adult congenital heart disease patients is limited due to concerns of high radiation doses. The purpose of this study was to prospectively assess whether low radiation dose cardiac CT is feasible to evaluate ventricular systolic function in adults with congenital heart disease. METHODS: The study group included 30 consecutive patients with significant congenital heart disease who underwent a total of 35 ECG-gated cardiac CT scans utilizing a 320-detector row CT scanner. Each study included a non-contrast scan and subsequent contrast-enhanced retrospectively-gated acquisition. Effective radiation dose was estimated by multiplying the dose length product by a k-factor of 0.014mSv/mGycm. RESULTS: The mean age of the patients was 34.4±8.9years, 60% were men, and mean body mass index was 24.2±4.3kg/m2. A majority of patients (n=28, 93.3%) had contraindications to cardiac MRI. A tube potential of 80kV was used in 27 (77.1%) of the contrast-enhanced scans. The mean signal-to-noise and contrast-to-noise ratios were 11.5±3.9 and 10.3±3.7, respectively. The median radiation dose for non-contrast and contrast-enhanced images were 0.1mSv (0.07-0.2mSv) and 0.94mSv (0.5-2.1mSv), respectively. All 35 CT scans were successfully analyzed for ventricular systolic function. CONCLUSIONS: A low radiation contrast-enhanced, retrospectively-gated cardiac CT with a median radiation dose of less than 1mSv was successful in evaluating ventricular systolic function in 30 consecutive adult congenital heart disease patients who underwent a total of 35 scans.


Subject(s)
Cardiac-Gated Imaging Techniques , Heart Defects, Congenital/diagnostic imaging , Tomography, X-Ray Computed , Adult , Contrast Media , Feasibility Studies , Female , Humans , Male , Middle Aged , Prospective Studies , Radiation Dosage , Young Adult
5.
J Cardiovasc Comput Tomogr ; 10(5): 359-63, 2016.
Article in English | MEDLINE | ID: mdl-27591767

ABSTRACT

BACKGROUND: Coronary artery calcium (CAC) predicts coronary heart disease events and is important for individualized cardiac risk assessment. This report assesses the interscan variability of CT for coronary calcium quantification using image acquisition with standard and reduced radiation dose protocols and whether the use of reduced radiation dose acquisition with iterative reconstruction (IR; "reduced-dose/IR ") allows for similar image quality and reproducibility when compared to standard radiation dose acquisition with filtered back projection (FBP; "standard-dose/FBP") on 320-detector row computed tomography (320-CT). METHODS: 200 consecutive patients (60 ± 9 years, 59% male) prospectively underwent two standard- and two reduced-dose acquisitions (800 total scans, 1600 reconstructions) using 320 slice CT and 120 kV tube voltage. Automated tube current modulation was used and for reduced-dose scans, prescribed tube current was lowered by 70%. Image noise and Agatston scores were determined and compared. RESULTS: Regarding stratification by Agatston score categories (0, 1-10, 11-100, 101-400, >400), reduced-dose/IR versus standard-dose/FBP had excellent agreement at 89% (95% CI: 86-92%) with kappa 0.86 (95% CI: 0.81-0.90). Standard-dose/FBP rescan agreement was 93% (95% CI: 89-96%) with kappa = 0.91 (95% CI: 0.86-0.95) while reduced-dose/IR rescan agreement was similar at 91% (95% CI: 87-94%) with kappa 0.88 (95% CI: 0.83-0.93). Image noise was significantly higher but clinically acceptable for reduced-dose/IR (18 Hounsfield Unit [HU] mean) compared to standard-dose/FBP (16 HU; p < 0.0001). Median radiation exposure was 74% lower for reduced- (0.37 mSv) versus standard-dose (1.4 mSv) acquisitions. CONCLUSION: Rescan agreement was excellent for reduced-dose image acquisition with iterative reconstruction and standard-dose acquisition with filtered back projection for the quantification of coronary calcium by CT. These methods make it possible to reduce radiation exposure by 74%. CLINICAL TRIAL REGISTRATION: URL: https://clinicaltrials.gov/ct2/show/NCT01621594. UNIQUE IDENTIFIER: NCT01621594.


Subject(s)
Computed Tomography Angiography/methods , Coronary Angiography/methods , Coronary Artery Disease/diagnostic imaging , Coronary Vessels/diagnostic imaging , Multidetector Computed Tomography/methods , Radiation Dosage , Radiation Exposure/prevention & control , Radiographic Image Interpretation, Computer-Assisted/methods , Vascular Calcification/diagnostic imaging , Aged , Algorithms , Female , Humans , Male , Maryland , Middle Aged , Predictive Value of Tests , Prospective Studies , Radiation Exposure/adverse effects , Reproducibility of Results , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...