Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
2.
Clin Neuroradiol ; 33(4): 993-1005, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37336867

ABSTRACT

PURPOSE: This study aimed to detect age-related brain metabolic and microstructural changes in healthy human brains by the use of whole-brain proton magnetic resonance spectroscopic imaging (1H­MRSI) and quantitative MR imaging (qMRI). METHODS: In this study, 60 healthy participants with evenly distributed ages (between 21 and 69 years) and sex underwent MRI examinations at 3T including whole-brain 1H­MRSI. The concentrations of the metabolites N­acetylaspartate (NAA), choline-containing compounds (Cho), total creatine and phosphocreatine (tCr), glutamine and glutamate (Glx), and myo-inositol (mI), as well as the brain relaxation times T2, T2' and T1 were measured in 12 regions of interest (ROI) in each hemisphere. Correlations between measured parameters and age were estimated with linear regression analysis and Pearson's correlation test. RESULTS: Significant age-related changes of brain regional metabolite concentrations and tissue relaxation times were found: NAA decreased in eight of twelve ROIs, Cho increased in three ROIs, tCr in four ROIs, and mI in three ROIs. Glx displayed a significant decrease in one ROI and an increase in another ROI. T1 increased in four ROIs and T2 in one ROI, while T2' decreased in two ROIs. A negative correlation of tCr concentrations with T2' relaxation time was found in one ROI as well as the positive correlations of age-related T1 relaxation time with concentrations of tCr, mI, Glx and Cho in another ROI. CONCLUSION: Normal aging in human brain is associated with coexistent brain regional metabolic alterations and microstructural changes, which may be related to age-related decline in cognitive, affective and psychomotor domains of life in the older population.


Subject(s)
Aging , Magnetic Resonance Imaging , Humans , Magnetic Resonance Spectroscopy/methods , Magnetic Resonance Imaging/methods , Aging/metabolism , Aging/pathology , Brain/pathology , Creatine/metabolism , Choline/metabolism , Aspartic Acid , Inositol/metabolism , Receptors, Antigen, T-Cell/metabolism
3.
AJNR Am J Neuroradiol ; 37(3): 447-54, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26564440

ABSTRACT

BACKGROUND AND PURPOSE: Knowledge of age-related physiological changes in the human brain is a prerequisite to identify neurodegenerative diseases. Therefore, in this study whole-brain (1)H-MRS was used in combination with quantitative MR imaging to study the effects of normal aging on healthy human brain metabolites and microstructure. MATERIALS AND METHODS: Sixty healthy volunteers, 21-70 years of age, were studied. Brain maps of the metabolites NAA, creatine and phosphocreatine, and Cho and the tissue irreversible and reversible transverse relaxation times T2 and T2' were derived from the datasets. The relative metabolite concentrations and the values of relaxation times were measured with ROIs placed within the frontal and parietal WM, centrum semiovale, splenium of the corpus callosum, hand motor area, occipital GM, putamen, thalamus, pons ventral/dorsal, and cerebellar white matter and posterior lobe. Linear regression analysis and Pearson correlation tests were used to analyze the data. RESULTS: Aging resulted in decreased NAA concentrations in the occipital GM, putamen, splenium of the corpus callosum, and pons ventral and decreased creatine and phosphocreatine concentrations in the pons dorsal and putamen. Cho concentrations did not change significantly in selected brain regions. T2 increased in the cerebellar white matter and decreased in the splenium of the corpus callosum with aging, while the T2' decreased in the occipital GM, hand motor area, and putamen, and increased in the splenium of the corpus callosum. Correlations were found between NAA concentrations and T2' in the occipital GM and putamen and between creatine and phosphocreatine concentrations and T2' in the putamen. CONCLUSIONS: The effects of normal aging on brain metabolites and microstructure are region-dependent. Correlations between both processes are evident in the gray matter. The obtained data could be used as references for future studies on patients.


Subject(s)
Aging/metabolism , Aging/pathology , Brain/metabolism , Brain/pathology , Neuroimaging/methods , Adult , Aged , Brain Chemistry , Female , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Male , Middle Aged , Multimodal Imaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL