Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(2): e0263985, 2022.
Article in English | MEDLINE | ID: mdl-35171969

ABSTRACT

Rosette morphology across Arabidopsis accessions exhibits considerable variation. Here we report a high-throughput phenotyping approach based on automatic image analysis to quantify rosette shape and dissect the underlying genetic architecture. Shape measurements of the rosettes in a core set of Recombinant Inbred Lines from an advanced mapping population (Multiparent Advanced Generation Inter-Cross or MAGIC) derived from inter-crossing 19 natural accessions. Image acquisition and analysis was scaled to extract geometric descriptors from time stamped images of growing rosettes. Shape analyses revealed heritable morphological variation at early juvenile stages and QTL mapping resulted in over 116 chromosomal regions associated with trait variation within the population. Many QTL linked to variation in shape were located near genes related to hormonal signalling and signal transduction pathways while others are involved in shade avoidance and transition to flowering. Our results suggest rosette shape arises from modular integration of sub-organ morphologies and can be considered a functional trait subjected to selective pressures of subsequent morphological traits. On an applied aspect, QTLs found will be candidates for further research on plant architecture.


Subject(s)
Arabidopsis/genetics , Chromosomes, Plant/genetics , Genetic Variation , Phenotype , Plant Leaves/genetics , Quantitative Trait Loci , Arabidopsis/growth & development , Chromosome Mapping , Plant Leaves/growth & development
2.
Physiol Plant ; 174(1): e13597, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34792806

ABSTRACT

Drought is a major abiotic stress that limits crop productivity and is driving the need to introduce new tolerant crops with better economic yield. Tef (Eragrostis tef) is a neglected (orphan) Ethiopian warm-season annual gluten-free cereal with high nutritional and health benefits. Further, tef is resilient to environmental challenges such as drought, but the adaptive mechanisms remain poorly understood. In this study, metabolic changes associated with drought response in 11 tef accessions were identified using phenomic and metabolomic approaches under controlled conditions. Computerized image analysis of droughted plants indicated reductions in leaf area and green pigments compared with controls. Metabolite profiling based on flow-infusion electrospray-high-resolution mass spectroscopy (FIE-HRMS) showed drought associated changes in flavonoid, phenylpropanoid biosynthesis, sugar metabolism, valine, leucine and isoleucine biosynthesis, and pentose phosphate pathways. Flavonoid associated metabolites and TCA intermediates were lower in the drought group, whereas most of the stress-responsive amino acids and sugars were elevated. Interestingly, after drought treatment, one accession Enatite (Ent) exhibited a significantly higher plant area than the others, and greater accumulation of flavonoids, amino acids (serine and glycine), sugars (ribose, myo-inositol), and fatty acids. The increased accumulation of these metabolites could explain the increased tolerance to drought in Ent compared with other accessions. This is the first time a non-targeted metabolomics approach has been applied in tef, and our results provide a framework for a better understanding of the tef metabolome during drought stress that will help to identify traits to improve this understudied potential crop.


Subject(s)
Droughts , Eragrostis , Metabolome , Metabolomics/methods , Phenomics
3.
Front Plant Sci ; 11: 591886, 2020.
Article in English | MEDLINE | ID: mdl-33362820

ABSTRACT

We present an image processing method for accurately segmenting crop plots from Unmanned Aerial System imagery (UAS). The use of UAS for agricultural monitoring has increased significantly, emerging as a potentially cost effective alternative to manned aerial surveys and field work for remotely assessing crop state. The accurate segmentation of small densely-packed crop plots from UAS imagery over extensive areas is an important component of this monitoring activity in order to assess the state of different varieties and treatment regimes in a timely and cost-effective manner. Despite its importance, a reliable crop plot segmentation approach eludes us, with best efforts being relying on significant manual parameterization. The segmentation method developed uses a combination of edge detection and Hough line detection to establish the boundaries of each plot with pixel/point based metrics calculated for each plot segment. We show that with limited parameterization, segmentation of crop plots consistently over 89% accuracy are possible on different crop types and conditions. This is comparable to results obtained from rice paddies where the plant material in plots is sharply contrasted with the water, and represents a considerable improvement over previous methods for typical dry land crops.

4.
Food Energy Secur ; 7(4): e00145, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30774947

ABSTRACT

The incorporation of new sophisticated phenotyping technologies within a crop improvement program allows for a plant breeding strategy that can include selections for major root traits previously inaccessible due to the challenges in their phenotype assessment. High-throughput precision phenotyping technology is employed to evaluate root ontogeny and progressive changes to root architecture of both novel amphiploid and introgression lines of Festulolium over four consecutive months of the growing season and these compared under the same time frame to that of closely related perennial ryegrass (L. perenne) varieties. Root imaging using conventional photography and assembled multiple merged images was used to compare frequencies in root number, their distribution within 0-20 and 20-40 cm depths within soil columns, and progressive changes over time. The Festulolium hybrids had more extensive root systems in comparison with L. perenne, and this was especially evident at depth. It was shown that the acquisition of extensive root systems in Festulolium hybrids was not dependent on the presence of an entire Festuca genome. On the contrary, the most pronounced effect on root development within the four Festulolium populations studied was observed in the introgression line Bx509, where a single small genome sequence from F. arundinacea had been previously transferred onto its homoeologous site on the long arm of chromosome 3 of an otherwise complete L. perenne genome. This demonstrates that a targeted introgression-breeding approach may be sufficient to confer a significant improvement in the root morphology in Lolium without a significant compromise to its genome integrity. The forage production of Bx509 was either higher (months 1-3) or equivalent to (month 4) that of its L. perenne parent control demonstrating that the enhanced root development achieved by the introgression line was without compromise to its agronomic performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...