Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 266(16): 10093-8, 1991 Jun 05.
Article in English | MEDLINE | ID: mdl-2037567

ABSTRACT

The immunoaffinity-purified subunits of the yeast DNA primase-DNA polymerase protein complex and subunit-specific monoclonal antibodies were used to explore the structural relationships of the subunits in the complex. The reconstituted four-subunit complex (180-, 86-, 58-, and 49-kDa polypeptides) behaved as a single species, exhibiting a Stokes radius of 80 A and a sedimentation coefficient of 8.9 S. The calculated molecular weight of the reconstituted complex is 312,000. We infer that the stoichiometry of the complex is one of each subunit per complex. The complex has a prolate ellipsoid shape with an axial ratio of approximately 16. When the 180-kDa and DNA primase subunits were recombined in the absence of the 86-kDa subunit, a physical complex formed, as judged by immunoprecipitation of DNA primase activity and polypeptides with an anti-180-kDa monoclonal antibody. While the 86-kDa subunit readily forms a physical complex with the 180-kDa DNA polymerase catalytic subunit, we have not detected a complex containing 86-kDa and the DNA primase subcomplex (49- and 58-kDa subunits). The 86-kDa subunit was not required for DNA primase-DNA polymerase complex formation; the 180-kDa subunit and DNA primase heterodimer directly interact. However, the presence of the 86-kDa subunit increased the rate at which the DNA primase and 180-kDa polypeptides formed a complex and increased the total fraction of DNA primase activity that was associated with DNA polymerase activity. The observations demonstrate that the DNA primase p49.p58 heterodimer and the DNA polymerase p86.p180 heterodimer interact via the 180-kDa subunit. The four-subunit reconstituted complex was sufficient to catalyze the DNA chain extension coupled to RNA primer synthesis on a single-stranded DNA template, as previously observed in the conventionally purified complex isolated from wild type cells.


Subject(s)
DNA Replication , RNA Nucleotidyltransferases/metabolism , Saccharomyces cerevisiae/enzymology , Chromatography, Affinity , Chromatography, Gel , DNA Primase , Electrophoresis, Polyacrylamide Gel , Molecular Weight , Precipitin Tests
2.
J Biol Chem ; 266(5): 3005-15, 1991 Feb 15.
Article in English | MEDLINE | ID: mdl-1704371

ABSTRACT

The yeast Saccharomyces cerevisiae catalytic DNA polymerase I 180-kDa subunit and the tightly associated 86-kDa polypeptide have been purified using immunoaffinity chromatography, permitting further characterization of the DNA polymerase activity of the DNA primase-DNA polymerase protein complex. The subunits were purified to apparent homogeneity from separate overproducing yeast strains using monoclonal antibodies specifically recognizing each subunit. When the individual subunits were recombined in vitro a p86p180 physical complex formed spontaneously, as judged by immunoprecipitation of 180-kDa polypeptide and DNA polymerase activity with the anti-86-kDa monoclonal antibody. The 86-kDa subunit stabilized the DNA polymerase activity of the 180-kDa catalytic subunit at 30 degrees C, the physiological temperature. The apparent DNA polymerase processivity of 50-60 nucleotides on poly(dA).oligo(dT)12 or poly(dT).oligo(A)8-12 template-primer was not affected by the presence of the 86-kDa subunit but was reduced by increased Mg2+ concentration. The Km of the catalytic 180-kDa subunit for dATP or DNA primer terminus was unaffected by the presence of the 86-kDa subunit. The isolated 180-kDa polypeptide was sufficient to catalyze all the DNA synthesis that had been observed previously in the DNA primase-DNA polymerase protein complex. The 180-kDa subunit possessed a 3'----5'-exonuclease activity that catalyzed degradation of polynucleotides, but degradation of oligonucleotide substrates of chain lengths up to 50 was not detected. This exonuclease activity was unaffected by the presence of the 86-kDa subunit. Despite the striking physical similarity of the DNA primase-DNA polymerase protein complex in all eukaryotes examined, the data presented here indicate differences in the enzymatic properties detected in preparations of the DNA polymerase subunits isolated from S. cerevisiae as compared with the properties of preparations from Drosophila cells. In particular, the 3'----5'-exonuclease activity associated with the yeast catalytic DNA polymerase subunit was not masked by the 86-kDa subunit.


Subject(s)
DNA-Directed DNA Polymerase/metabolism , RNA Nucleotidyltransferases/metabolism , Saccharomyces cerevisiae/enzymology , Animals , Chromatography, Affinity , DNA Primase , Drosophila melanogaster/enzymology , Electrophoresis, Polyacrylamide Gel , Gene Expression Regulation, Fungal , Hot Temperature , Plasmids , RNA/genetics , Saccharomyces cerevisiae/genetics
3.
J Biol Chem ; 261(18): 8564-9, 1986 Jun 25.
Article in English | MEDLINE | ID: mdl-2424899

ABSTRACT

The yeast DNA primase-DNA polymerase activities catalyze de novo oligoribonucleotide primed DNA synthesis on single-stranded DNA templates (Singh, H., and Dumas, L. B. (1984) J. Biol. Chem. 259, 7936-7940). In the presence of ATP substrate and poly(dT) template, the enzyme preparation synthesizes discrete-length oligoribonucleotides (apparent length 8-12) and multiples thereof. The unit length primers are the products of de novo processive synthesis and are precursors to the synthesis of the multimers. Multimeric length oligoribonucleotides are not generated by continuous processive extension of the de novo synthesis products, however, nor do they arise by ligation of unit length oligomers. Instead, dissociation and rebinding of a factor, possibly the DNA primase, results in processive extension of the RNA synthesis products by an additional modal length. Thus, catalysis by the yeast DNA primase can be viewed as repeated cycles of processive unit length RNA chain extension. Inclusion of dATP substrate results in three distinct transitions: (i) coupling of RNA priming to DNA synthesis, (ii) suppression of multimer RNA synthesis, and (iii) attenuation of primer length. The less than unit length RNA primers appear to result from premature DNA chain extension, not degradation from either end of the unit length primer. We discuss possible roles of DNA polymerase and DNA primase in RNA primer attenuation.


Subject(s)
DNA Replication , DNA-Directed DNA Polymerase/metabolism , RNA Nucleotidyltransferases/metabolism , RNA/metabolism , Saccharomyces cerevisiae/enzymology , DNA Primase , Deoxyadenine Nucleotides/pharmacology , Oligonucleotides/metabolism , Poly T/metabolism , RNA Ligase (ATP)/metabolism , Templates, Genetic , Time Factors
4.
Br Med J ; 4(5782): 302-3, 1971 Oct 30.
Article in English | MEDLINE | ID: mdl-5123925
SELECTION OF CITATIONS
SEARCH DETAIL
...