Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Faraday Discuss ; 132: 281-92; discussion 309-19, 2006.
Article in English | MEDLINE | ID: mdl-16833123

ABSTRACT

Raman spectroscopy is attracting interest for the rapid identification of bacteria and fungi and is now becoming accepted as a potentially powerful whole-organism fingerprinting technique. However, the Raman effect is so weak that collection times are lengthy, and this insensitivity means that bacteria must be cultured to gain enough biomass, which therefore limits its usefulness in clinical laboratories where high-throughput analyses are needed. The Raman effect can fortunately be greatly enhanced (by some 10(3)-10(6)-fold) if the molecules are attached to, or microscopically close to, a suitably roughened surface; a technique known as surface-enhanced Raman scattering (SERS). In this study we investigated SERS, employing an aggregated silver colloid substrate, for the analysis of a closely related group of bacteria belonging to the genus Bacillus. Each spectrum took only 20 s to collect and highly reproducible data were generated. The multivariate statistical technique of principal components-discriminant function analysis (PC-DFA) was used to group these bacteria based on their SERS fingerprints. The resultant ordination plots showed that the SERS spectra were highly discriminatory and gave accurate identification at the strain level. In addition, Bacillus species also undergo sporulation, and we demonstrate that SERS peaks that could be attributed to the dipicolinic acid biomarker, could be readily generated from Bacillus spores.


Subject(s)
Bacteria/isolation & purification , Spectrum Analysis, Raman/methods , Bacillus/isolation & purification , Gram-Negative Bacteria/isolation & purification , Gram-Positive Bacteria/isolation & purification , Spores, Bacterial , Surface Properties
2.
Anal Chem ; 76(17): 5198-202, 2004 Sep 01.
Article in English | MEDLINE | ID: mdl-15373461

ABSTRACT

Surface-enhanced Raman scattering (SERS) utilizing colloidal silver has already been shown to provide a rapid means of generating "whole-organism fingerprints" for use in bacterial identification and discrimination. However, one of the main drawbacks of the technique for the analysis of microbiological samples with optical Raman microspectroscopy has been the inability to acquire pre-emptively a region of the sample matrix where both the SERS substrate and biomass are both present. In this study, we introduce a Raman interface for scanning electron microscopy (SEM) and demonstrate the application of this technology to the reproducible and targeted collection of bacterial SERS spectra. In secondary electron mode, the SEM images clearly reveal regions of the sample matrix where the sodium borohydride-reduced silver colloidal particles are present, Stokes spectra collected from these regions are rich in vibrational bands, whereas spectra taken from other areas of the sample elicit a strong fluorescence response. Replicate SERS spectra were collected from two bacterial strains and show excellent reproducibility both by visual inspection and as demonstrated by principal components analysis on the whole SERS spectra.


Subject(s)
Bacillus subtilis/isolation & purification , Escherichia coli/isolation & purification , Microscopy, Electron, Scanning/methods , Spectrum Analysis, Raman/methods , Bacillus subtilis/ultrastructure , Colloids/chemistry , Escherichia coli/ultrastructure , Silver Compounds/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...