Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Crystallogr ; 57(Pt 3): 885-895, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38846758

ABSTRACT

Conformational change mediates the biological functions of macromolecules. Crystallographic measurements can map these changes with extraordinary sensitivity as a function of mutations, ligands and time. A popular method for detecting structural differences between crystallographic data sets is the isomorphous difference map. These maps combine the phases of a chosen reference state with the observed changes in structure factor amplitudes to yield a map of changes in electron density. Such maps are much more sensitive to conformational change than structure refinement is, and are unbiased in the sense that observed differences do not depend on refinement of the perturbed state. However, even modest changes in unit-cell properties can render isomorphous difference maps useless. This is unnecessary. Described here is a generalized procedure for calculating observed difference maps that retains the high sensitivity to conformational change and avoids structure refinement of the perturbed state. This procedure is implemented in an open-source Python package, MatchMaps, that can be run in any software environment supporting PHENIX [Liebschner et al. (2019). Acta Cryst. D75, 861-877] and CCP4 [Agirre et al. (2023). Acta Cryst. D79, 449-461]. Worked examples show that MatchMaps 'rescues' observed difference electron-density maps for poorly isomorphous crystals, corrects artifacts in nominally isomorphous difference maps, and extends to detecting differences across copies within the asymmetric unit or across altogether different crystal forms.

2.
Proc Natl Acad Sci U S A ; 121(9): e2313192121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38386706

ABSTRACT

Enzymes catalyze biochemical reactions through precise positioning of substrates, cofactors, and amino acids to modulate the transition-state free energy. However, the role of conformational dynamics remains poorly understood due to poor experimental access. This shortcoming is evident with Escherichia coli dihydrofolate reductase (DHFR), a model system for the role of protein dynamics in catalysis, for which it is unknown how the enzyme regulates the different active site environments required to facilitate proton and hydride transfer. Here, we describe ligand-, temperature-, and electric-field-based perturbations during X-ray diffraction experiments to map the conformational dynamics of the Michaelis complex of DHFR. We resolve coupled global and local motions and find that these motions are engaged by the protonated substrate to promote efficient catalysis. This result suggests a fundamental design principle for multistep enzymes in which pre-existing dynamics enable intermediates to drive rapid electrostatic reorganization to facilitate subsequent chemical steps.


Subject(s)
Amino Acids , Electricity , Catalysis , Escherichia coli , Molecular Conformation , Tetrahydrofolate Dehydrogenase
3.
bioRxiv ; 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37732267

ABSTRACT

Conformational change mediates the biological functions of macromolecules. Crystallographic measurements can map these changes with extraordinary sensitivity as a function of mutations, ligands, and time. The isomorphous difference map remains the gold standard for detecting structural differences between datasets. Isomorphous difference maps combine the phases of a chosen reference state with the observed changes in structure factor amplitudes to yield a map of changes in electron density. Such maps are much more sensitive to conformational change than structure refinement is, and are unbiased in the sense that observed differences do not depend on refinement of the perturbed state. However, even minute changes in unit cell properties can render isomorphous difference maps useless. This is unnecessary. Here we describe a generalized procedure for calculating observed difference maps that retains the high sensitivity to conformational change and avoids structure refinement of the perturbed state. We have implemented this procedure in an open-source python package, MatchMaps, that can be run in any software environment supporting PHENIX and CCP4. Through examples, we show that MatchMaps "rescues" observed difference electron density maps for poorly-isomorphous crystals, corrects artifacts in nominally isomorphous difference maps, and extends to detecting differences across copies within the asymmetric unit, or across altogether different crystal forms.

4.
bioRxiv ; 2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37398233

ABSTRACT

Enzymes catalyze biochemical reactions through precise positioning of substrates, cofactors, and amino acids to modulate the transition-state free energy. However, the role of conformational dynamics remains poorly understood due to lack of experimental access. This shortcoming is evident with E. coli dihydrofolate reductase (DHFR), a model system for the role of protein dynamics in catalysis, for which it is unknown how the enzyme regulates the different active site environments required to facilitate proton and hydride transfer. Here, we present ligand-, temperature-, and electric-field-based perturbations during X-ray diffraction experiments that enable identification of coupled conformational changes in DHFR. We identify a global hinge motion and local networks of structural rearrangements that are engaged by substrate protonation to regulate solvent access and promote efficient catalysis. The resulting mechanism shows that DHFR's two-step catalytic mechanism is guided by a dynamic free energy landscape responsive to the state of the substrate.

SELECTION OF CITATIONS
SEARCH DETAIL
...