Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Differentiation ; 138: 100782, 2024.
Article in English | MEDLINE | ID: mdl-38810379

ABSTRACT

The mandible is composed of several musculoskeletal tissues including bone, cartilage, and tendon that require precise patterning to ensure structural and functional integrity. Interestingly, most of these tissues are derived from one multipotent cell population called cranial neural crest cells (CNCCs). How CNCCs are properly instructed to differentiate into various tissue types remains nebulous. To better understand the mechanisms necessary for the patterning of mandibular musculoskeletal tissues we utilized the avian mutant talpid2 (ta2) which presents with several malformations of the facial skeleton including dysplastic tendons, mispatterned musculature, and bilateral ectopic cartilaginous processes extending off Meckel's cartilage. We found an ectopic epithelial BMP signaling domain in the ta2 mandibular prominence (MNP) that correlated with the subsequent expansion of SOX9+ cartilage precursors. These findings were validated with conditional murine models suggesting an evolutionarily conserved mechanism for CNCC-derived musculoskeletal patterning. Collectively, these data support a model in which cilia are required to define epithelial signal centers essential for proper musculoskeletal patterning of CNCC-derived mesenchyme.


Subject(s)
Mandible , Neural Crest , Animals , Neural Crest/cytology , Neural Crest/metabolism , Mice , Mandible/growth & development , Mandible/metabolism , Body Patterning/genetics , Cartilage/metabolism , Cartilage/growth & development , Cartilage/cytology , Cilia/metabolism , Cilia/genetics , Mesoderm/cytology , Mesoderm/metabolism , Mesoderm/growth & development , Gene Expression Regulation, Developmental , Avian Proteins/genetics , Avian Proteins/metabolism , Signal Transduction , Cell Differentiation , Chick Embryo , Chickens/genetics , SOX9 Transcription Factor/metabolism , SOX9 Transcription Factor/genetics
2.
J Dev Biol ; 9(2)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33805906

ABSTRACT

Primary cilia are ubiquitous microtubule-based organelles that serve as signaling hubs for numerous developmental pathways, most notably the Hedgehog (Hh) pathway. Defects in the structure or function of primary cilia result in a class of diseases called ciliopathies. It is well known that primary cilia participate in transducing a Hh signal, and as such ciliopathies frequently present with phenotypes indicative of aberrant Hh function. Interestingly, the exact mechanisms of cilia-dependent Hh signaling transduction are unclear as some ciliopathic animal models simultaneously present with gain-of-Hh phenotypes in one organ system and loss-of-Hh phenotypes in another. To better understand how Hh signaling is perturbed across different tissues in ciliopathic conditions, we examined four distinct Hh-dependent signaling centers in the naturally occurring avian ciliopathic mutant talpid2 (ta2). In addition to the well-known and previously reported limb and craniofacial malformations, we observed dorsal-ventral patterning defects in the neural tube, and a shortened gastrointestinal tract. Molecular analyses for elements of the Hh pathway revealed that the loss of cilia impact transduction of an Hh signal in a tissue-specific manner at variable levels of the pathway. These studies will provide increased knowledge into how impaired ciliogenesis differentially regulates Hh signaling across tissues and will provide potential avenues for future targeted therapeutic treatments.

3.
Development ; 148(4)2021 02 15.
Article in English | MEDLINE | ID: mdl-33589509

ABSTRACT

Ciliopathies represent a growing class of diseases caused by defects in microtubule-based organelles called primary cilia. Approximately 30% of ciliopathies are characterized by craniofacial phenotypes such as craniosynostosis, cleft lip/palate and micrognathia. Patients with ciliopathic micrognathia experience a particular set of difficulties, including impaired feeding and breathing, and have extremely limited treatment options. To understand the cellular and molecular basis for ciliopathic micrognathia, we used the talpid2 (ta2 ), a bona fide avian model for the human ciliopathy oral-facial-digital syndrome subtype 14. Histological analyses revealed that the onset of ciliopathic micrognathia in ta2 embryos occurred at the earliest stages of mandibular development. Neural crest-derived skeletal progenitor cells were particularly sensitive to a ciliopathic insult, undergoing unchecked passage through the cell cycle and subsequent increased proliferation. Furthermore, whereas neural crest-derived skeletal differentiation was initiated, osteoblast maturation failed to progress to completion. Additional molecular analyses revealed that an imbalance in the ratio of bone deposition and resorption also contributed to ciliopathic micrognathia in ta2 embryos. Thus, our results suggest that ciliopathic micrognathia is a consequence of multiple aberrant cellular processes necessary for skeletal development, and provide potential avenues for future therapeutic treatments.


Subject(s)
Bone Remodeling , Ciliopathies/etiology , Micrognathism/etiology , Organogenesis , Phenotype , Animals , Bone Remodeling/genetics , Bone Resorption , Cell Cycle/genetics , Ciliopathies/diagnosis , Craniofacial Abnormalities/genetics , Disease Susceptibility , Embryo, Nonmammalian , Gene Expression Regulation, Developmental , Genetic Association Studies , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Micrognathism/diagnosis , Organogenesis/genetics , Osteoblasts/metabolism , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...