Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(1): e0296681, 2024.
Article in English | MEDLINE | ID: mdl-38241251

ABSTRACT

Context-dependence is fundamental to risky monetary decision-making. A growing body of evidence suggests that temporal context, or recent events, alters risk-taking at a minimum of three timescales: immediate (e.g. trial-by-trial), neighborhood (e.g. a group of consecutive trials), and global (e.g. task-level). To examine context effects, we created a novel monetary choice set with intentional temporal structure in which option values shifted between multiple levels of value magnitude ("contexts") several times over the course of the task. This structure allowed us to examine whether effects of each timescale were simultaneously present in risky choice behavior and the potential mechanistic role of arousal, an established correlate of risk-taking, in context-dependency. We found that risk-taking was sensitive to immediate, neighborhood, and global timescales: risk-taking decreased following large (vs. small) outcome amounts, increased following large positive (but not negative) shifts in context, and increased when cumulative earnings exceeded expectations. We quantified arousal with skin conductance responses, which were related to the global timescale, increasing with cumulative earnings, suggesting that physiological arousal captures a task-level assessment of performance. Our results both replicate and extend prior research by demonstrating that risky decision-making is consistently dynamic at multiple timescales and that the role of arousal in risk-taking extends to some, but not all timescales of context-dependence.


Subject(s)
Decision Making , Risk-Taking , Decision Making/physiology , Arousal , Choice Behavior/physiology
2.
Nature ; 582(7810): 84-88, 2020 06.
Article in English | MEDLINE | ID: mdl-32483374

ABSTRACT

Data analysis workflows in many scientific domains have become increasingly complex and flexible. Here we assess the effect of this flexibility on the results of functional magnetic resonance imaging by asking 70 independent teams to analyse the same dataset, testing the same 9 ex-ante hypotheses1. The flexibility of analytical approaches is exemplified by the fact that no two teams chose identical workflows to analyse the data. This flexibility resulted in sizeable variation in the results of hypothesis tests, even for teams whose statistical maps were highly correlated at intermediate stages of the analysis pipeline. Variation in reported results was related to several aspects of analysis methodology. Notably, a meta-analytical approach that aggregated information across teams yielded a significant consensus in activated regions. Furthermore, prediction markets of researchers in the field revealed an overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the dataset2-5. Our findings show that analytical flexibility can have substantial effects on scientific conclusions, and identify factors that may be related to variability in the analysis of functional magnetic resonance imaging. The results emphasize the importance of validating and sharing complex analysis workflows, and demonstrate the need for performing and reporting multiple analyses of the same data. Potential approaches that could be used to mitigate issues related to analytical variability are discussed.


Subject(s)
Data Analysis , Data Science/methods , Data Science/standards , Datasets as Topic , Functional Neuroimaging , Magnetic Resonance Imaging , Research Personnel/organization & administration , Brain/diagnostic imaging , Brain/physiology , Datasets as Topic/statistics & numerical data , Female , Humans , Logistic Models , Male , Meta-Analysis as Topic , Models, Neurological , Reproducibility of Results , Research Personnel/standards , Software
3.
Sci Rep ; 10(1): 9878, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32555293

ABSTRACT

Forty years ago, prospect theory introduced the notion that risky options are evaluated relative to their recent context, causing a significant shift in the study of risky monetary decision-making in psychology, economics, and neuroscience. Despite the central role of past experiences, it remains unclear whether, how, and how much past experiences quantitatively influence risky monetary choices moment-to-moment in a nominally learning-free setting. We analyzed a large dataset of risky monetary choices with trial-by-trial feedback to quantify how past experiences, or recent events, influence risky choice behavior and the underlying processes. We found larger recent outcomes both negatively influence subsequent risk-taking and positively influence the weight put on potential losses. Using a hierarchical Bayesian framework to fit a modified version of prospect theory, we demonstrated that the same risks will be evaluated differently given different past experiences. The computations underlying risky decision-making are fundamentally dynamic, even if the environment is not.

SELECTION OF CITATIONS
SEARCH DETAIL
...