Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Saudi J Biol Sci ; 29(5): 3122-3132, 2022 May.
Article in English | MEDLINE | ID: mdl-35355957

ABSTRACT

Hyperglycemia is a central trait of diabetes mellitus (DM) and is linked to an increase in free radical generation and oxidative stress in the testes, resulting in testicular tissue damage and male infertility. Synthetic medicines are commonly used to manage diabetes; however, they are costly and associated with adverse effects. As a result, the search for a safer and affordable alternative from medicinal plants that contain antioxidants has become imperative to scavenge free radicals caused by hyperglycaemia, thereby alleviating male reproductive dysfunction. Therefore, the present aimed to investigate the ameliorative effects of Anchomanes difformis aqueous extract against oxidative stress in the testes and epididymis of streptozotocin-induced diabetic male Wistar rats. A total of 64 male Wistar rats (eight weeks old) weighing 180 ± 10 mg/kg were divided into seven groups at random. Type 2 diabetic mellitus (T2DM) was induced by streptozotocin (STZ) and a 10% fructose injection intraperitoneally using 40 mg/kg body weight rats. The levels of malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD) activity, reduced glutathione (GSH) concentration, and ferric reducing antioxidant (FRAP) as well as 2, 2-diphenyl-1-picrylhydrazyl (DPPH) values were used to establish the testicular oxidative status. It was found that A. difformis extract significantly (p < 0.05) lowered MDA levels in diabetic rats. Both CAT and SOD activity were significantly (p < 0.05) lower following induction of DM and increased (p < 0.05) after treating with A. difformis. The findings of this study show that A. difformis extract could be a promising source of lead compounds for the development of a therapeutic agent to treat male infertility caused by DM complications.

2.
Saudi J Biol Sci ; 29(1): 324-330, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35002425

ABSTRACT

Kolaviron, a biflavonoid isolated from the edible seeds of Garcinia kola, lowers blood glucose in experimental models of diabetes; however, the underlying mechanisms are not yet fully elucidated. The objective of the current study was to assess the effects of kolaviron on islet dynamics in streptozotocin-induced diabetic rats. Using double immunolabeling of glucagon and insulin, we identified insulin-producing ß- and glucagon-producing α-cells in the islets of diabetic and control rats and determined the fractional ß-cell area, α-cell area and islet number. STZ challenged rats presented with islet hypoplasia and reduced ß-cell area concomitant with an increase in α-cell area. Kolaviron restored some islet architecture in diabetic rats through the increased ß-cell area. Overall, kolaviron-treated diabetic rats presented a significant (p < 0.05) increase in the number of large and very large islets compared to diabetic control but no difference in islet number and α-cell area. The ß-cell replenishment potential of kolaviron and its overall positive effects on glycemic control suggest that it may be a viable target for diabetes treatment.

3.
Plants (Basel) ; 10(2)2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33562428

ABSTRACT

Kidney disease in diabetes is one of the common microvascular complications of diabetes mellitus implicated in end-stage renal failure. This study explored the ability of Anchomanes difformis to ameliorate kidney and pancreatic damage in type 2 diabetes mellitus using male Wistar rats. Two weeks of fructose (10%) administration followed by streptozotocin (40 mg/kg) were used to induce type 2 diabetes. Leaf extract (aqueous) of Anchomanes difformis (200 mg and 400 mg/kgBW) was administered orally for six weeks. Body weights were monitored, urea and creatinine were measured. Interleukins (IL)-1ß, IL-6, IL-10, IL-18, and TNFα were measured in the kidney lysate. CAT, SOD, ORAC, FRAP, and MDA levels were also evaluated in the kidney. Transcription factors (Nrf2 and NF-ĸB/p65) and apoptotic markers (Bcl2 and caspase 3) were investigated in the kidney. Histological sections of the pancreas and kidney tissues were examined for any visible pathology. Supplementation with Anchomanesdifformis enhanced antioxidant status, modulated inflammatory response, and reduced apoptosis in the kidney. It also restored the kidney and pancreatic histoarchitecture of the treated diabetic rats. The pathophysiology associated with diabetic nephropathy and pancreatic damage showcase the importance of exploring the use of antidiabetic, nephroprotective agents such as Anchomanes difformis to kidney damage in type 2 diabetes.

4.
Diabetes Metab Syndr Obes ; 13: 4543-4560, 2020.
Article in English | MEDLINE | ID: mdl-33262627

ABSTRACT

BACKGROUND: Progression of diabetes mellitus has increasingly led to several diabetic complications. Diabetes is one of the major factors implicated in male reproductive system damage. Recent approaches such as the use of medicinal plants have been explored in the management of diabetes and associated complications. Anchomanes difformis (common name: children's umbrella) has been shown to possess anti-diabetic ability in animal model. Therefore, this study seeks to investigate the potency of Achomanes difformis in ameliorating diabetes-induced reproductive dysfunction. METHODS: Type 2 diabetes was induced in male Wistar rats with 10% fructose administration for 2 weeks and an intraperitoneal injection of 40mg/kgBW of streptozotocin. Aqueous extract (200mg and 400mg/kgBW) of Anchomanes difformis leaves was administered daily for 6 weeks. The rats were randomly divided into 7 groups with a minimum of eight rats in each (8 rats in normal groups and 10 in diabetic groups). The impact of diabetes and treatment was investigated by estimating sperm concentration, motility indices, viability and morphological parameters in the normal, treatment controls and diabetic rats using CASA-SCA system. Histological examination of the testes and epididymis was performed. RESULTS: Diabetes induction resulted in significant decrease in sperm concentration, viability and some motility parameters with 40% abnormalities in sperm morphology. The administration of Anchomanes difformis significantly increased sperm concentration and sperm viability, while it significantly improved the percentage of morphologically normal sperm in diabetic rats. Anchomanes difformis ameliorated testicular damage such as vacuolization and loss of germinal epithelium in the diabetic-treated rats when compared to the diabetic controls. CONCLUSION: The potency Anchomanes difformis displayed against diabetic-induced damage in the reproductive system might be a new and promising tool in the management of male reproductive dysfunctions and associated complications in diabetes mellitus.

5.
Biomedicines ; 8(2)2020 Feb 08.
Article in English | MEDLINE | ID: mdl-32046294

ABSTRACT

Persistent hyperglycemia is known to cause enhanced generation of reactive oxygen species in diabetes. Several inflammatory cytokines are induced by oxidative stress, and their release also leads to increased oxidative stress; this makes oxidative stress one of the important factors in the development of chronic inflammation and other immune responses. These have been implicated in the development of diabetic complications such as nephropathy and cardiomyopathy. Anchomanes difformis has been shown to possess antioxidant and anti-inflammatory potentials. The present study investigated the immunomodulatory potential and the antiapoptotic ability of Anchomanes difformis to ameliorate heart toxicity and injury in type II diabetes. Two weeks of fructose (10%) administration followed by single intraperitoneal injection of streptozotocin (40 mg/kg) were used to induce type II diabetes in male Wistar rats. Leaf extract (aqueous) of Anchomanes difformis (200 and 400 mg/kg) was administered orally for six weeks. Blood glucose concentrations and body weights before and after interventions were determined. Interleukin (IL)-1ß, IL-6, IL-10, IL-18, monocyte chemoattractant protein 1 (MCP-1), and tumor necrosis factor alpha (TNFα) were measured in the heart homogenates. Catalase (CAT), superoxide dismutase (SOD), total protein, oxygen radical absorbance capacity (ORAC), ferric reducing antioxidant power (FRAP), thiobarbituric acid reactive substances (TBARS), and heart-type fatty acid-binding protein (H-FABP) levels were determined. Expressions of transcription factors (Nrf 2 and NFkB/p65) and apoptotic markers were also investigated in the heart. Anchomanes difformis administration reduced pro-inflammatory cytokines, increased anti-inflammatory markers, and enhanced antioxidant defense in the heart of diabetic treated animals. Anchomanes difformis is a new, promising therapeutic agent that can be explored for the treatment of pathological conditions associated with immune responses and will be a useful tool in the management of associated diabetic complications.

6.
BMC Complement Altern Med ; 15: 236, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-26179065

ABSTRACT

BACKGROUND: Alteration in antioxidant defence and increase in oxidative stress that results in tissue injury is characteristic of diabetes. We evaluated the protective effects of kolaviron (a flavonoid complex extracted from the seeds of Garcinia kola) on hepatic antioxidants, lipid peroxidation and apoptosis in diabetic rats. METHODS: To induce diabetes, rats were injected with streptozotocin intraperitoneally at a single dose of 50 mg/kg. Kolaviron (100 mg/kg) was administered orally for 6 weeks (5 times weekly). Activities of liver antioxidant enzymes was analysed with Multiskan Spectrum plate reader. High performance liquid chromatography (HPLC) was used in the analysis of MDA (malondialdehyde), a product of lipid peroxidation. Apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. RESULT: Diabetic rats exhibited a significant increase in the peroxidation of hepatic lipids as observed from the elevated level of malondialdehyde (MDA). In addition, Oxygen Radical Absorbance Capacity (ORAC), level of reduced glutathione (GSH), ratio of reduced to oxidized glutathione (GSH: GSSG) and catalase (CAT) activity were decreased in the liver of diabetic rats. The activities of GPX (glutathione peroxidase) and SOD (superoxide dismutase) were unaltered in diabetic rats. TUNEL assay revealed increased apoptotic cell death in the liver. Kolaviron attenuated lipid peroxidation and apoptosis, increased CAT activity, GSH levels and GSH: GSSG ratio. The ORAC of kolaviron-treated diabetic liver was restored to near-normal values. CONCLUSION: Kolaviron protects the liver against oxidative and apoptotic damage induced by hyperglycemia.


Subject(s)
Antioxidants/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Flavonoids/therapeutic use , Garcinia kola/chemistry , Liver/drug effects , Oxidative Stress/drug effects , Phytotherapy , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Apoptosis/drug effects , Catalase/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Flavonoids/pharmacology , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Hyperglycemia/drug therapy , Lipid Peroxidation/drug effects , Liver/metabolism , Liver/pathology , Male , Malondialdehyde/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rats , Rats, Wistar , Seeds/chemistry , Superoxide Dismutase/metabolism
7.
Phytomedicine ; 21(14): 1785-93, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25481391

ABSTRACT

Diabetic nephropathy is a complex disease that involves increased production of free radicals which is a strong stimulus for the release of pro-inflammatory factors. We evaluated the renal protective effect of kolaviron (KV) - a Garcinia kola seed extract containing a mixture of 5 flavonoids, in diabetes-induced nephrotoxic rats. Male Wistar rats were divided into 4 groups: untreated controls (C); normal rats treated with kolaviron (C+KV); untreated diabetic rats (D); kolaviron treated diabetic rats (D+KV). A single intraperitoneal injection of streptozotocin (STZ, 50mg/kg) was used for the induction of diabetes. Renal function parameters were estimated in a clinical chemistry analyzer. Markers of oxidative stress in the kidney homogenate were analyzed in a Multiskan Spectrum plate reader and Bio-plex Promagnetic bead-based assays was used for the analysis of inflammatory markers. The effect of kolaviron on diabetes-induced apoptosis was assessed by TUNEL assay. In the diabetic rats, alterations in antioxidant defenses such as an increase in lipid peroxidation, glutathione peroxidase (GPX) activity and a decrease in catalase (CAT) activity, glutathione (GSH) levels and oxygen radical absorbance capacity (ORAC) were observed. There was no difference in superoxide dismutase (SOD) activity. Diabetes induction increased apoptotic cell death and the levels of interleukin (IL)-1ß and tumor necrosis factor (TNF)-α with no effect on IL-10. Kolaviron treatment of diabetic rats restored the activities of antioxidant enzymes, reduced lipid peroxidation and increased ORAC and GSH concentration in renal tissues. Kolaviron treatment of diabetic rats also suppressed renal IL-1ß. The beneficial effects of kolaviron on diabetes-induced kidney injury may be due to its inhibitory action on oxidative stress, IL-1ß production and apoptosis.


Subject(s)
Apoptosis/drug effects , Diabetic Nephropathies/drug therapy , Flavonoids/pharmacology , Inflammation/drug therapy , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Animals , Antioxidants/metabolism , Biflavonoids/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Garcinia kola/chemistry , Interleukin-1beta/metabolism , Kidney/drug effects , Kidney/pathology , Kidney Function Tests , Lipid Peroxidation , Male , Molecular Structure , Rats, Wistar , Seeds/chemistry
8.
Article in English | MEDLINE | ID: mdl-25395698

ABSTRACT

BACKGROUND: Diabetes mellitus characterized by hyperglycaemia could affect sperm quality as a result of increased oxidative stress. This study was performed to investigate the effects of red palm oil (RPO), aqueous rooibos tea extracts (RTE) as well as their combination (RPO + RTE) on sperm motility parameters in streptozotocin-induced diabetic rats. MATERIALS AND METHODS: Diabetes was induced by a single administration of streptozotocin (50 mg/kg) and the rats were treated with red palm oil (2 ml/day) and / or aqueous rooibos tea extract (2%) for 7 weeks. Sperm motility parameters were measured using Computer Assisted Sperm Analyzer (CASA). RESULTS: Hyperglycaemia negatively affected the sperm progressive motility significantly at p<0.05. There was a significant decrease (p<0.05) in sperm linearity (LIN) in the diabetic group when compared with the normal control group. RPO supplemented diabetic rats exhibited increased progressive sperm motility, sperm linearity (LIN) and wobble (WOB). Significant decreases (p<0.05) in straight line velocity (VSL) and average path velocity (VAP) of the sperms were observed in all the diabetic groups when compared to the control group. Significant (p<0.05) elevated levels of WOB and LIN were observed following RTE treatment and co-administration with RPO respectively. CONCLUSION: The present study suggests that red palm oil and / or rooibos administration exhibited no adverse effects on sperm motility parameters but rather showed some beneficial effects.


Subject(s)
Arecaceae/chemistry , Aspalathus , Asthenozoospermia/prevention & control , Diabetes Mellitus, Experimental/complications , Plant Oils/therapeutic use , Sperm Motility/drug effects , Spermatozoa/drug effects , Animals , Diabetes Complications/prevention & control , Diabetes Mellitus, Experimental/physiopathology , Hyperglycemia/complications , Male , Oxidative Stress , Palm Oil , Phytotherapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Oils/pharmacology , Rats, Wistar , Spermatozoa/physiology
9.
ScientificWorldJournal ; 2014: 437081, 2014.
Article in English | MEDLINE | ID: mdl-25013856

ABSTRACT

This study was carried out to investigate the in vitro antioxidant potentials of the leaves and fruits of Nauclea latifolia, a straggling shrub or small tree, native to tropical Africa and Asia. Hot water extracts of the leaves and fruits of Nauclea latifolia were assessed for their total polyphenolic, flavanol, and flavonol contents as well as 1-diphenyl-2-picrylhydrazyl (DPPH) scavenging ability, ferric reducing antioxidant power (FRAP), Trolox equivalence antioxidant capacity (TEAC), and oxygen radical absorbance capacity (ORAC) assays. The aqueous extract of the leaves was found to contain higher level of total polyphenols (11.63 ± 0.023 mg GAE/g), flavanol (1.45 ± 0.10 mg CE/g), and flavonol (2.22 ± 0.37 mg QE/g) than the extract of the fruits with values of 1.75 ± 0.02 mg GAE/g (total polyphenol), 0.15 ± 0.01 mg CE/g (flavanol), and 1.00 ± 0.13 mg QE/g (flavonol). Similarly, the aqueous extract of the leaves also exhibited higher DPPH (IC50 20.64 mg/mL), FRAP (86.10 ± 3.46 µmol AAE/g), TEAC (94.83 ± 3.57 µmol TE/g), and ORAC (196.55 ± 0.073 µmol TE/g) than the extract of the fruits with DPPH (IC50 120.33 mg/mL), FRAP (12.23 ± 0.40 µmol AAE/g), TEAC (12.48 ± 0.21 µmol TE/g), and ORAC (58.88 ± 0.073 µmol TE/g). The present study showed that Nauclea latifolia has strong antioxidant potentials with the leaves demonstrating higher in vitro antioxidant activities than the fruits.


Subject(s)
Antioxidants/chemistry , Plant Extracts/chemistry , Rubiaceae/chemistry , Flavonols/analysis , Fruit/chemistry , Oxidation-Reduction , Plant Leaves/chemistry , Polyphenols/analysis
10.
ScientificWorldJournal ; 2014: 921080, 2014.
Article in English | MEDLINE | ID: mdl-24795542

ABSTRACT

AIMS: Bitter kola seed (Garcinia kola, family: Guttiferae) has been used as a social masticatory agent in Africa for several years and is believed to possess many useful medicinal properties. The present study evaluates the antioxidative, anti-inflammatory, and antilipidemic effects of kolaviron (an extract from the Garcinia kola seeds) in the blood of streptozotocin- (STZ) induced diabetic rats. METHODS. Diabetic rats were treated with kolaviron (100 mg/kg b·wt) orally, five times a week for a period of six weeks. Serum glucose and HBA(1C) concentrations were estimated in experimental groups. The activities of antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPX) (in erythrocytes) as well as plasma concentration of malondialdehyde (MDA), a product of lipid peroxidation, oxygen radical absorbing capacity (ORAC) and ferric-reducing antioxidant power (FRAP) were investigated. Serum levels of proinflammatory cytokines and growth factor: interleukin- (IL-) 1, monocyte chemotactic protein-1 (MCP-1), and vascular endothelial growth factor (VEGF), respectively, were also analyzed. RESULTS: Kolaviron treatment markedly improved antioxidant status and abated inflammatory response evidenced by reduction in the levels of proinflammatory cytokines and growth factor, lipid peroxidation product, and the restoration of activities of erythrocyte antioxidant enzymes in the blood of diabetic rats. CONCLUSION: Kolaviron improved antioxidant status, reduced inflammation, and protected against hyperglycemic-induced oxidative damage in the blood of diabetic rats.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Flavonoids/pharmacology , Inflammation/metabolism , Oxidative Stress/drug effects , Animals , Antioxidants/metabolism , Blood Glucose/drug effects , Diabetes Mellitus, Experimental/drug therapy , Erythrocytes/drug effects , Erythrocytes/metabolism , Flavonoids/administration & dosage , Glycated Hemoglobin/metabolism , Inflammation/drug therapy , Inflammation Mediators/blood , Lipids/blood , Male , Plant Extracts/pharmacology , Rats
11.
BMC Complement Altern Med ; 13: 363, 2013 Dec 20.
Article in English | MEDLINE | ID: mdl-24359406

ABSTRACT

BACKGROUND: Chronic inflammation plays a crucial role in hyperglycemia-induced liver injury. Kolaviron (KV), a natural biflavonoid from Garcinia kola seeds have been shown to possess anti- inflammatory properties which has not been explored in diabetes. To our knowledge, this is the first study to investigate the effect of KV on pro-inflammatory proteins in the liver of diabetic rats. METHODS: Diabetes was induced by a single intraperitoneal injection of streptozotocin (STZ) (50 mg/kg) in male Wistar rats. Kolaviron (100 mg/kg) was administered orally five times a week for six weeks. The concentrations of cytokines and chemokine were measured using Bio-plex Pro™ magnetic bead-based assays (Bio-Rad Laboratories, Hercules, USA). Plasma glucose and serum biomarkers of liver dysfunction were analyzed with diagnostic kits in an automated clinical chemistry analyzer. Insulin concentration was estimated by radioimmunoassay (RIA). RESULT: Kolaviron (100mg/kg) treatment significantly ameliorated hyperglycemia and liver dysfunction. Serum levels of hepatic marker enzymes were significantly reduced in kolaviron treated diabetic rats. Kolaviron prevented diabetes induced increase in the hepatic levels of proinflammatory cytokines; interleukin (IL)-1beta, IL-6, tumour necrosis factor (TNF-α) and monocyte chemotactic protein (MCP-1). CONCLUSION: The results of this study demonstrate that the hepatoprotective effects of kolaviron in diabetic rats may be partly associated with its modulating effect on inflammatory responses.


Subject(s)
Chemical and Drug Induced Liver Injury/metabolism , Cytokines/blood , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Flavonoids/pharmacology , Hypoglycemic Agents/pharmacology , Animals , Blood Glucose/drug effects , Diabetes Mellitus, Experimental/blood , Garcinia kola/chemistry , Hyperglycemia/metabolism , Inflammation/blood , Inflammation/drug therapy , Inflammation/metabolism , Liver/drug effects , Liver/metabolism , Male , Organ Size/drug effects , Plant Extracts/pharmacology , Rats , Rats, Wistar , Seeds/chemistry , Streptozocin
SELECTION OF CITATIONS
SEARCH DETAIL
...