Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Fertil Dev ; 36(2): 112-123, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38064192

ABSTRACT

CONTEXT: Genome editing enables the introduction of beneficial sequence variants into the genomes of animals with high genetic merit in a single generation. This can be achieved by introducing variants into primary cells followed by producing a live animal from these cells by somatic cell nuclear transfer cloning. The latter step is associated with low efficiencies and developmental problems due to incorrect reprogramming of the donor cells, causing animal welfare concerns. Direct editing of fertilised one-cell embryos could circumvent this issue and might better integrate with genetic improvement strategies implemented by the industry. METHODS: In vitro fertilised zygotes were injected with TALEN editors and repair template to introduce a known coat colour dilution mutation in the PMEL gene. Embryo biopsies of injected embryos were screened by polymerase chain reaction and sequencing for intended biallelic edits before transferring verified embryos into recipients for development to term. Calves were genotyped and their coats scanned with visible and hyperspectral cameras to assess thermal energy absorption. KEY RESULTS: Multiple non-mosaic calves with precision edited genotypes were produced, including calves from high genetic merit parents. Compared to controls, the edited calves showed a strong coat colour dilution which was associated with lower thermal energy absorbance. CONCLUSIONS: Although biopsy screening was not absolutely accurate, non-mosaic, precisely edited calves can be readily produced by embryo-mediated editing. The lighter coat colouring caused by the PMEL mutation can lower radiative heat gain which might help to reduce heat stress. IMPLICATIONS: The study validates putative causative sequence variants to rapidly adapt grazing cattle to changing environmental conditions.


Subject(s)
Gene Editing , Genome , Animals , Cattle , Genotype , Embryo, Mammalian , Mutation
2.
Front Genet ; 13: 925913, 2022.
Article in English | MEDLINE | ID: mdl-35899192

ABSTRACT

Genome editing provides opportunities to improve current cattle breeding strategies through targeted introduction of natural sequence variants, accelerating genetic gain. This can be achieved by harnessing homology-directed repair mechanisms following editor-induced cleavage of the genome in the presence of a repair template. Introducing the genome editors into zygotes and editing in embryos has the advantage of uncompromised development into live animals and alignment with contemporary embryo-based improvement practices. In our study, we investigated the potential to introduce sequence variants, known from the pre-melanosomal protein 17 (PMEL) and prolactin receptor (PRLR) genes, and produce non-mosaic, edited embryos, completely converted into the precision genotype. Injection of gRNA/Cas9 editors into bovine zygotes to introduce a 3 bp deletion variant into the PMEL gene produced up to 11% fully converted embryos. The conversion rate was increased to up to 48% with the use of TALEN but only when delivered by plasmid. Testing three gRNA/Cas9 editors in the context of several known PRLR sequence variants, different repair template designs and delivery as DNA, RNA or ribonucleoprotein achieved full conversion rates up to 8%. Furthermore, we developed a biopsy-based screening strategy for non-mosaic embryos which has the potential for exclusively producing non-mosaic animals with intended precision edits.

3.
BMC Genomics ; 22(1): 457, 2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34139989

ABSTRACT

BACKGROUND: Animal health and welfare are at the forefront of public concern and the agricultural sector is responding by prioritising the selection of welfare-relevant traits in their breeding schemes. In some cases, welfare-enhancing traits such as horn-status (i.e., polled) or diluted coat colour, which could enhance heat tolerance, may not segregate in breeds of primary interest, highlighting gene-editing tools such as the CRISPR-Cas9 technology as an approach to rapidly introduce variation into these populations. A major limitation preventing the acceptance of CRISPR-Cas9 mediated gene-editing, however, is the potential for off-target mutagenesis, which has raised concerns about the safety and ultimate applicability of this technology. Here, we present a clone-based study design that has allowed a detailed investigation of off-target and de novo mutagenesis in a cattle line bearing edits in the PMEL gene for diluted coat-colour. RESULTS: No off-target events were detected from high depth whole genome sequencing performed in precursor cell-lines and resultant calves cloned from those edited and non-edited cell lines. Long molecule sequencing at the edited site and plasmid-specific PCRs did not reveal structural variations and/or plasmid integration events in edited samples. Furthermore, an in-depth analysis of de novo mutations across the edited and non-edited cloned calves revealed that the mutation frequency and spectra were unaffected by editing status. Cells in culture, however, appeared to have a distinct mutation signature where de novo mutations were predominantly C > A mutations, and in cloned calves they were predominantly T > G mutations, deviating from the expected excess of C > T mutations. CONCLUSIONS: We found no detectable CRISPR-Cas9 associated off-target mutations in the gene-edited cells or calves derived from the gene-edited cell line. Comparison of de novo mutation in two gene-edited calves and three non-edited control calves did not reveal a higher mutation load in any one group, gene-edited or control, beyond those anticipated from spontaneous mutagenesis. Cell culture and somatic cell nuclear transfer cloning processes contributed the major source of contrast in mutational profile between samples.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Animals , Cattle , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Genome , Mutagenesis , Mutation
4.
FASEB Bioadv ; 2(11): 638-652, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33205005

ABSTRACT

Therapeutic monoclonal antibodies (mAbs) represent one of the most important classes of pharmaceutical proteins to treat human diseases. Most are produced in cultured mammalian cells which is expensive, limiting their availability. Goats, striking a good balance between a relatively short generation time and copious milk yield, present an alternative platform for the cost-effective, flexible, large-scale production of therapeutic mAbs. Here, we focused on cetuximab, a mAb against epidermal growth factor receptor, that is commercially produced under the brand name Erbitux and approved for anti-cancer treatments. We generated several transgenic goat lines that produce cetuximab in their milk. Two lines were selected for detailed characterization. Both showed stable genotypes and cetuximab production levels of up to 10 g/L. The mAb could be readily purified and showed improved characteristics compared to Erbitux. The goat-produced cetuximab (gCetuximab) lacked a highly immunogenic epitope that is part of Erbitux. Moreover, it showed enhanced binding to CD16 and increased antibody-dependent cell-dependent cytotoxicity compared to Erbitux. This indicates that these goats produce an improved cetuximab version with the potential for enhanced effectiveness and better safety profile compared to treatments with Erbitux. In addition, our study validates transgenic goats as an excellent platform for large-scale production of therapeutic mAbs.

5.
Sci Rep ; 8(1): 7661, 2018 05 16.
Article in English | MEDLINE | ID: mdl-29769555

ABSTRACT

We applied precise  zygote-mediated genome editing to eliminate beta-lactoglobulin (BLG), a major allergen in cows' milk. To efficiently generate LGB knockout cows, biopsied embryos were screened to transfer only appropriately modified embryos. Transfer of 13 pre-selected embryos into surrogate cows resulted in the birth of three calves, one dying shortly after birth. Deep sequencing results confirmed conversion of the genotype from wild type to the edited nine bp deletion by more than 97% in the two male calves. The third calf, a healthy female, had in addition to the expected nine bp deletion (81%), alleles with an in frame 21 bp deletion (<17%) at the target site. While her milk was free of any mature BLG, we detected low levels of a BLG variant derived from the minor deletion allele. This confirmed that the nine bp deletion genotype completely knocks out production of BLG. In addition, we showed that the LGB knockout animals are free of any TALEN-mediated off-target mutations or vector integration events using an unbiased whole genome analysis. Our study demonstrates the feasibility of generating precisely biallelically edited cattle by zygote-mediated editing for the safe production of hypoallergenic milk.


Subject(s)
Allergens/chemistry , Gene Editing , Lactoglobulins/deficiency , Lactoglobulins/genetics , Milk Hypersensitivity/prevention & control , Milk/chemistry , Animals , Animals, Genetically Modified , Cattle , Female , Male , Sequence Deletion
6.
Sci Rep ; 6: 37607, 2016 11 23.
Article in English | MEDLINE | ID: mdl-27876865

ABSTRACT

We have previously generated transgenic cattle with additional copies of bovine ß- and κ casein genes. An initial characterisation of milk produced with a hormonally induced lactation from these transgenic cows showed an altered milk composition with elevated ß-casein levels and twofold increased κ-casein content. Here we report the first in-depth characterisation of the composition of the enriched casein milk that was produced through a natural lactation. We have analyzed milk from the high expressing transgenic line TG3 for milk composition at early, peak, mid and late lactation. The introduction of additional ß- and κ-casein genes resulted in the expected expression of the transgene derived proteins and an associated reduction in the size of the casein micelles. Expression of the transgenes was associated with complex changes in the expression levels of other milk proteins. Two other major milk components were affected, namely fat and micronutrients. In addition, the sialic acid content of the milk was increased. In contrast, the level of lactose remained unchanged. This novel milk with its substantially altered composition will provide insights into the regulatory processes synchronizing the synthesis and assembly of milk components, as well as production of potentially healthier milk with improved dairy processing characteristics.


Subject(s)
Caseins/genetics , Gene Dosage , Milk/metabolism , Animals , Animals, Genetically Modified , Cattle , Electrophoresis, Gel, Two-Dimensional , Fatty Acids/analysis , Female , Gene Expression , Lactation , Mammary Glands, Animal , Micelles , Milk Proteins/metabolism , N-Acetylneuraminic Acid/metabolism , Particle Size , Protein Isoforms/metabolism , Spectrum Analysis , Transgenes
7.
J Chromatogr B Analyt Technol Biomed Life Sci ; 877(16-17): 1667-77, 2009 Jun 01.
Article in English | MEDLINE | ID: mdl-19419911

ABSTRACT

Downstream purification of a model recombinant protein (human myelin basic protein) from milk of transgenic cows is described. The recombinant protein was expressed as a His tagged fusion protein in the milk of transgenic cows and was found associated with the casein micellar phase. While difficulties in obtaining good recoveries were found when employing conventional micelle disruption procedures, direct capture using the cation exchanger SP Sepharose Big Beads was found successful in the extraction of the recombinant protein. Early breakthrough suggested a slow release of the recombinant protein from the micelles and dictated micelle disruption in order to obtain good yields. A new approach for deconstruction of the calcium core of the casein micelles, employing the interaction between the micellar calcium and the active sites of the cation exchanger resin was developed. Milk samples were loaded to the column in aliquots with a column washing step after each aliquot. This sequential loading approach successfully liberated the recombinant protein from the micelles and was found superior to the conventional sample loading approach. It increased the recovery by more than 25%, reduced fouling due to milk components and improved the column hydrodynamic properties as compared to the conventional sample loading approach. Hardware and software modifications to the chromatography system were necessary in order to keep the whole process automated. A second purification step using a Ni2+ affinity column was used to isolate the recombinant protein at purity more than 90% and a recovery percentage of 78%.


Subject(s)
Animals, Genetically Modified/metabolism , Caseins/chemistry , Chromatography, Ion Exchange/methods , Milk/chemistry , Myelin Basic Protein/isolation & purification , Animals , Animals, Genetically Modified/genetics , Cattle , Female , Humans , Micelles , Myelin Basic Protein/chemistry , Myelin Basic Protein/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification
8.
Theriogenology ; 67(1): 166-77, 2007 Jan 01.
Article in English | MEDLINE | ID: mdl-17052749

ABSTRACT

Cloning technology is an emerging biotechnological tool that could provide commercial opportunities for livestock agriculture. However, the process is very inefficient and the molecular events underlying the technology are poorly understood. The resulting uncertainties are causing concerns regarding the safety of food products derived from cloned livestock. There are similar concerns for livestock produced by biotechnologies which enable the purposeful introduction of genetic modifications. To increase the knowledge about food products from animals generated by these modern biotechnologies, we assessed compositional differences associated with milk and cheese derived from cloned and transgenic cows. Based on gross composition, fatty acid and amino acid profiles and mineral and vitamin contents, milk produced by clones and conventional cattle were essentially similar and consistent with reference values from dairy cows farmed in the same region under similar conditions. Whereas colostrum produced by transgenic cows with additional casein genes had similar IgG secretion levels and kinetics to control cows, milk from the transgenic cows had a distinct yellow appearance, in contrast to the white color of milk from control cows. Processing of milk into cheese resulted in differences in the gross composition and amino acid profiles; 'transgenic' cheese had lower fat and higher salt contents and small but characteristic differences in the amino acid profile compared to control cheese.


Subject(s)
Animals, Genetically Modified , Cattle/physiology , Cloning, Organism/veterinary , Consumer Product Safety , Dairy Products/analysis , Animals , Cattle/genetics , Cheese/analysis , Fatty Acids/analysis , Female , Milk/chemistry , Milk Proteins/analysis
9.
Nat Biotechnol ; 21(2): 157-62, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12548290

ABSTRACT

To enhance milk composition and milk processing efficiency by increasing the casein concentration in milk, we have introduced additional copies of the genes encoding bovine beta- and kappa-casein (CSN2 and CSN3, respectively) into female bovine fibroblasts. Nuclear transfer with four independent donor cell lines resulted in the production of 11 transgenic calves. The analysis of hormonally induced milk showed substantial expression and secretion of the transgene-derived caseins into milk. Nine cows, representing two high-expressing lines, produced milk with an 8-20% increase in beta-casein, a twofold increase in kappa-casein levels, and a markedly altered kappa-casein to total casein ratio. These results show that it is feasible to substantially alter a major component of milk in high producing dairy cows by a transgenic approach and thus to improve the functional properties of dairy milk.


Subject(s)
Animals, Genetically Modified/metabolism , Caseins/analysis , Cloning, Organism/methods , Genetic Enhancement/methods , Milk/chemistry , Animals , Caseins/biosynthesis , Cattle/genetics , Cell Line , Feasibility Studies , Gene Dosage , Gene Expression Regulation , Milk/metabolism , Nuclear Transfer Techniques , Protein Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...