Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Hematol Rep ; 15(4): 543-554, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37873792

ABSTRACT

BACKGROUND: Coronavirus Disease 2019 (COVID-19) was described to affect red blood cells (RBC) in both severe and mild disease courses. The aim of this study was to investigate whether hematological and hemorheological changes that were previously described for COVID-19 patients after the acute infection state are still prominent after another 4 months to assess potential long-term effects. METHODS: Hematological and RBC rheological parameters, including deformability and aggregation, were measured 41 days after infection in COVID-19 patients and non-COVID control (T0) and 4 months later in COVID-19 patients (T1). RESULTS: The data confirm alterations in hematological parameters, mainly related to cell volume and hemoglobin concentration, but also reduced deformability and increased aggregation at T0 compared to control. While RBC deformability seems to have recovered, hemoglobin-related parameters and RBC aggregation were still impaired at T1. The changes were thus more pronounced in male COVID-19 patients. CONCLUSION: COVID-19-related changes of the RBC partly consist of several months and might be related to persistent symptoms reported by many COVID-19 patients.

3.
Metabolites ; 12(11)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36355109

ABSTRACT

Patients with Fontan circulation are particularly dependent on low pulmonary vascular resistance because their lungs are passively perfused. Hypoxia drives pulmonary vasoconstriction; thus, red blood cell (RBC) deformability and stability of hematological parameters might be of particular importance, because alterations during hypoxia might further influence circulation. This study aimed to measure respective parameters in patients with Fontan circulation exposed to normobaric hypoxia. A total of 18 patients with Fontan circulation (16 to 38 years) were exposed to normobaric hypoxia (15.2% ambient oxygen). Blood samples were taken in normoxia, after 24 h in hypoxia, and 60 min after return to normoxia. Blood count, RBC age distribution, EPO, RBC deformability, marker of RBC nitric oxide, oxidative state, and RBC ATP were measured. Hypoxia increased oxidative stress in RBC, but without affecting RBC deformability. RBC age distribution remained unaffected, although EPO concentrations increased, followed by a rise in reticulocyte count at an already high hematocrit. NO metabolism was not affected by hypoxia. Modest normobaric hypoxia for 24 h did not impair RBC deformability in patients with Fontan circulation; however, the oxidative system seemed to be stressed. Given the high baseline Hct in these patients, hypoxia-induced erythropoiesis could adversely affect rheology with more prolonged hypoxia exposure.

4.
Biology (Basel) ; 11(5)2022 Apr 23.
Article in English | MEDLINE | ID: mdl-35625375

ABSTRACT

Autologous blood doping (ABD) refers to the transfusion of one's own blood after it has been stored. Although its application is prohibited in sports, it is assumed that ABD is applied by a variety of athletes because of its benefits on exercise performance and the fact that it is not detectable so far. Therefore, this study aims at identifying changes in hematological and hemorheological parameters during the whole course of ABD procedure and to relate those changes to exercise performance. Eight healthy men conducted a 31-week ABD protocol including two blood donations and the transfusion of their own stored RBC volume corresponding to 7.7% of total blood volume. Longitudinal blood and rheological parameter measurements and analyses of RBC membrane proteins and electrolyte levels were performed. Thereby, responses of RBC sub-populations-young to old RBC-were detected. Finally, exercise tests were carried out before and after transfusion. Results indicate a higher percentage of young RBC, altered RBC deformability and electrolyte concentration due to ABD. In contrast, RBC membrane proteins remained unaffected. Running economy improved after blood transfusion. Thus, close analysis of RBC variables related to ABD detection seems feasible but should be verified in further more-detailed studies.

5.
J Cell Mol Med ; 26(10): 3022-3030, 2022 05.
Article in English | MEDLINE | ID: mdl-35419946

ABSTRACT

Infection with the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and the associated coronavirus disease-19 (COVID-19) might affect red blood cells (RBC); possibly altering oxygen supply. However, investigations of cell morphology and RBC rheological parameters during a mild disease course are lacking and thus, the aim of the study. Fifty individuals with mild COVID-19 disease process were tested after the acute phase of SARS-CoV-2 infection (37males/13 females), and the data were compared to n = 42 healthy controls (30 males/12 females). Analysis of venous blood samples, taken at rest, revealed a higher percentage of permanently elongated RBC and membrane extensions in COVID-19 patients. Haematological parameters and haemoglobin concentration, MCH and MCV in particular, were highly altered in COVID-19. RBC deformability and deformability under an osmotic gradient were significantly reduced in COVID-19 patients. Higher RBC-NOS activation was not capable to at least in part counteract these reductions. Impaired RBC deformability might also be related to morphological changes and/or increased oxidative state. RBC aggregation index remained unaffected. However, higher shear rates were necessary to balance the aggregation-disaggregation in COVID-19 patients which might be, among others, related to morphological changes. The data suggest prolonged modifications of the RBC system even during a mild COVID-19 disease course.


Subject(s)
COVID-19 , Erythrocyte Deformability/physiology , Erythrocytes/metabolism , Female , Humans , Male , Rheology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...