Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Hum Mutat ; 43(6): 717-733, 2022 06.
Article in English | MEDLINE | ID: mdl-35178824

ABSTRACT

Rare disease patients are more likely to receive a rapid molecular diagnosis nowadays thanks to the wide adoption of next-generation sequencing. However, many cases remain undiagnosed even after exome or genome analysis, because the methods used missed the molecular cause in a known gene, or a novel causative gene could not be identified and/or confirmed. To address these challenges, the RD-Connect Genome-Phenome Analysis Platform (GPAP) facilitates the collation, discovery, sharing, and analysis of standardized genome-phenome data within a collaborative environment. Authorized clinicians and researchers submit pseudonymised phenotypic profiles encoded using the Human Phenotype Ontology, and raw genomic data which is processed through a standardized pipeline. After an optional embargo period, the data are shared with other platform users, with the objective that similar cases in the system and queries from peers may help diagnose the case. Additionally, the platform enables bidirectional discovery of similar cases in other databases from the Matchmaker Exchange network. To facilitate genome-phenome analysis and interpretation by clinical researchers, the RD-Connect GPAP provides a powerful user-friendly interface and leverages tens of information sources. As a result, the resource has already helped diagnose hundreds of rare disease patients and discover new disease causing genes.


Subject(s)
Genomics , Rare Diseases , Exome , Genetic Association Studies , Genomics/methods , Humans , Phenotype , Rare Diseases/diagnosis , Rare Diseases/genetics
3.
Orphanet J Rare Dis ; 15(1): 206, 2020 08 12.
Article in English | MEDLINE | ID: mdl-32787960

ABSTRACT

BACKGROUND: Rare diseases are individually rare but globally affect around 6% of the population, and in over 70% of cases are genetically determined. Their rarity translates into a delayed diagnosis, with 25% of patients waiting 5 to 30 years for one. It is essential to raise awareness of patients and clinicians of existing gene and variant-specific therapeutics at the time of diagnosis to avoid that treatment delays add up to the diagnostic odyssey of rare diseases' patients and their families. AIMS: This paper aims to provide guidance and give detailed instructions on how to write homogeneous systematic reviews of rare diseases' treatments in a manner that allows the capture of the results in a computer-accessible form. The published results need to comply with the FAIR guiding principles for scientific data management and stewardship to facilitate the extraction of datasets that are easily transposable into machine-actionable information. The ultimate purpose is the creation of a database of rare disease treatments ("Treatabolome") at gene and variant levels as part of the H2020 research project Solve-RD. RESULTS: Each systematic review follows a written protocol to address one or more rare diseases in which the authors are experts. The bibliographic search strategy requires detailed documentation to allow its replication. Data capture forms should be built to facilitate the filling of a data capture spreadsheet and to record the application of the inclusion and exclusion criteria to each search result. A PRISMA flowchart is required to provide an overview of the processes of search and selection of papers. A separate table condenses the data collected during the Systematic Review, appraised according to their level of evidence. CONCLUSIONS: This paper provides a template that includes the instructions for writing FAIR-compliant systematic reviews of rare diseases' treatments that enables the assembly of a Treatabolome database that complement existing diagnostic and management support tools with treatment awareness data.


Subject(s)
Data Management , Rare Diseases , Humans , Rare Diseases/genetics , Rare Diseases/therapy , Research Design , Systematic Reviews as Topic , Writing
4.
Orphanet J Rare Dis ; 14(1): 175, 2019 07 12.
Article in English | MEDLINE | ID: mdl-31300010

ABSTRACT

BACKGROUND: The needs and benefits of sharing health data to advance scientific research and improve clinical benefits have been well documented in recent years, specifically in the field of rare diseases where knowledge and expertise are limited and patient populations are geographically dispersed. Understanding what patients want and need from rare disease research and data sharing is important to ensure their participation and engagement in the process, and to ensure that these wishes and needs are embedded within research design. EURORDIS-Rare Diseases Europe regularly surveys the rare disease community to identify its perspectives and needs on a number of issues in order to represent rare disease patients and be their voice within European and International initiatives and policy developments. Here, we present key findings from a large quantitative survey conducted with patients with rare diseases and family members as part of a continuous evidence-based advocacy process developed at EURORDIS. The aim of this survey was to explore patient and family perspectives on data sharing and data protection in research and healthcare settings and develop relevant recommendations to support shaping of future data sharing initiatives in rare disease research. This survey, translated into 23 languages, was carried out via the Rare Barometer Programme and was designed to be accessible to a diverse population with a wide range of education backgrounds. It was widely disseminated via patient organisations worldwide to ensure that a wide range of voices and experiences were represented. MAIN FINDINGS: Rare disease patients, regardless of the severity of their disease and their socio-demographic profile, are clearly supportive of data sharing to foster research and improve healthcare. However, rare disease patients' willingness to share their data does come with specific requirements in order to respect their privacy, choices and needs for information regarding the use of their data. CONCLUSIONS: To ensure sustainability and success of international data sharing initiatives in health and research for rare diseases, appropriate legislations need to be implemented and multi-stakeholder efforts need to be pursued to foster cultural and technological changes enabling the systematic integration of patients' preferences regarding sharing of their own health data.


Subject(s)
Computer Security , Information Dissemination/methods , Rare Diseases , Humans , Socioeconomic Factors , Surveys and Questionnaires
5.
Article in English | MEDLINE | ID: mdl-30248891

ABSTRACT

The time required to reach a correct diagnosis is a key concern for rare disease (RD) patients. Diagnostic delay can be intolerably long, often described as an "odyssey" and, for some, a diagnosis may remain frustratingly elusive. The International Rare Disease Research Consortium proposed, as ultimate goal for 2017⁻2027, to enable all people with a suspected RD to be diagnosed within one year of presentation, if the disorder is known. Subsequently, unsolved cases would enter a globally coordinated diagnostic and research pipeline. In-depth analysis of the genotype through next generation sequencing, together with a standardized in-depth phenotype description and sophisticated high-throughput approaches, have been applied as diagnostic tools to increase the chance of a timely and accurate diagnosis. The success of this approach is evident in the Orphanet database. From 2010 to March 2017 over 600 new RDs and roughly 3600 linked genes have been described and identified. However, combination of -omics and phenotype data, as well as international sharing of this information, has raised ethical concerns. Values to be assessed include not only patient autonomy but also family implications, beneficence, non-maleficence, justice, solidarity and reciprocity, which must be respected and promoted and, at the same time, balanced among each other. In this work we suggest that, to maximize patients' involvement in the search for a diagnosis and identification of new causative genes, undiagnosed patients should have the possibility to: (1) actively participate in the description of their phenotype; (2) choose the level of visibility of their profile in matchmaking databases; (3) express their preferences regarding return of new findings, in particular which level of Variant of Unknown Significance (VUS) significance should be considered relevant to them. The quality of the relationship between individual patients and physicians, and between the patient community and the scientific community, is critically important for optimizing the use of available data and enabling international collaboration in order to provide a diagnosis, and the attached support, to unsolved cases. The contribution of patients to collecting and coding data comprehensively is critical for efficient use of data downstream of data collection.


Subject(s)
Delayed Diagnosis/prevention & control , International Cooperation , Patient Participation , Patient Rights/ethics , Rare Diseases/diagnosis , Databases, Factual , Delayed Diagnosis/ethics , Genotype , Global Health , Humans , Patient Participation/methods , Patient Preference , Phenotype , Rare Diseases/genetics , Social Justice
6.
Article in English | MEDLINE | ID: mdl-30081484

ABSTRACT

Rare diseases (RD) patient registries are powerful instruments that help develop clinical research, facilitate the planning of appropriate clinical trials, improve patient care, and support healthcare management. They constitute a key information system that supports the activities of European Reference Networks (ERNs) on rare diseases. A rapid proliferation of RD registries has occurred during the last years and there is a need to develop guidance for the minimum requirements, recommendations and standards necessary to maintain a high-quality registry. In response to these heterogeneities, in the framework of RD-Connect, a European platform connecting databases, registries, biobanks and clinical bioinformatics for rare disease research, we report on a list of recommendations, developed by a group of experts, including members of patient organizations, to be used as a framework for improving the quality of RD registries. This list includes aspects of governance, Findable, Accessible, Interoperable and Reusable (FAIR) data and information, infrastructure, documentation, training, and quality audit. The list is intended to be used by established as well as new RD registries. Further work includes the development of a toolkit to enable continuous assessment and improvement of their organizational and data quality.


Subject(s)
Quality Improvement , Rare Diseases , Registries/standards , Biomedical Research , Computational Biology , Data Accuracy , Europe , Humans , Information Storage and Retrieval/standards
7.
Hum Mol Genet ; 24(7): 1883-97, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25468678

ABSTRACT

Transgenic mouse models expressing mutant superoxide dismutase 1 (SOD1) have been critical in furthering our understanding of amyotrophic lateral sclerosis (ALS). However, such models generally overexpress the mutant protein, which may give rise to phenotypes not directly relevant to the disorder. Here, we have analysed a novel mouse model that has a point mutation in the endogenous mouse Sod1 gene; this mutation is identical to a pathological change in human familial ALS (fALS) which results in a D83G change in SOD1 protein. Homozgous Sod1(D83G/D83G) mice develop progressive degeneration of lower (LMN) and upper motor neurons, likely due to the same unknown toxic gain of function as occurs in human fALS cases, but intriguingly LMN cell death appears to stop in early adulthood and the mice do not become paralyzed. The D83 residue coordinates zinc binding, and the D83G mutation results in loss of dismutase activity and SOD1 protein instability. As a result, Sod1(D83G/D83G) mice also phenocopy the distal axonopathy and hepatocellular carcinoma found in Sod1 null mice (Sod1(-/-)). These unique mice allow us to further our understanding of ALS by separating the central motor neuron body degeneration and the peripheral effects from a fALS mutation expressed at endogenous levels.


Subject(s)
Amyotrophic Lateral Sclerosis/enzymology , Point Mutation , Superoxide Dismutase/genetics , Amyotrophic Lateral Sclerosis/genetics , Animals , Disease Models, Animal , Humans , Mice , Mice, Inbred C57BL , Motor Neurons/enzymology , Mutation, Missense , Superoxide Dismutase/metabolism , Superoxide Dismutase/toxicity , Superoxide Dismutase-1
8.
Science ; 344(6179): 94-7, 2014 Apr 04.
Article in English | MEDLINE | ID: mdl-24700859

ABSTRACT

Damage to the central nervous system caused by traumatic injury or neurological disorders can lead to permanent loss of voluntary motor function and muscle paralysis. Here, we describe an approach that circumvents central motor circuit pathology to restore specific skeletal muscle function. We generated murine embryonic stem cell-derived motor neurons that express the light-sensitive ion channel channelrhodopsin-2, which we then engrafted into partially denervated branches of the sciatic nerve of adult mice. These engrafted motor neurons not only reinnervated lower hind-limb muscles but also enabled their function to be restored in a controllable manner using optogenetic stimulation. This synthesis of regenerative medicine and optogenetics may be a successful strategy to restore muscle function after traumatic injury or disease.


Subject(s)
Light , Motor Neurons/physiology , Motor Neurons/transplantation , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Optogenetics , Animals , Axons/physiology , Cell Line , Channelrhodopsins , Electric Stimulation , Embryonic Stem Cells/cytology , Embryonic Stem Cells/physiology , Female , Hindlimb , Isometric Contraction , Mice , Mice, Inbred C57BL , Motor Neurons/cytology , Muscle Denervation , Muscle Fibers, Skeletal/physiology , Nerve Regeneration , Sciatic Nerve/physiology , Transfection , Transgenes
9.
Hum Mol Genet ; 23(16): 4187-200, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24667415

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal, neurodegenerative disorder in which motor neurons in the spinal cord and motor cortex degenerate. Although the majority of ALS cases are sporadic, mutations in Cu-Zn superoxide dismutase-1 (SOD1) are causative for 10-20% of familial ALS (fALS), and recent findings show that a hexanucleotide repeat expansion in the C9ORF72 gene may account for >30% of fALS cases in Europe. SOD1(G93A) transgenic mice have a phenotype and pathology similar to human ALS. In both ALS patients and SOD1(G93A) mice, the first pathological features of disease manifest at the neuromuscular junction, where significant denervation occurs prior to motor neuron degeneration. Strategies aimed at preventing or delaying denervation may therefore be of benefit in ALS. In this study, we show that Nogo-A levels increase in muscle fibres of SOD1(G93A) mice along with the elevation of markers of neuromuscular dysfunction (CHRNA1/MUSK). Symptomatic treatment of SOD1(G93A) mice from 70 days of age with an anti-Nogo-A antibody (GSK577548) significantly improves hindlimb muscle innervation at 90 days, a late symptomatic stage of disease, resulting in increased muscle force and motor unit survival and a significant increase in motor neuron survival. However, not all aspects of this improvement in anti-Nogo-A antibody-treated SOD1(G93A) mice were maintained at end-stage disease. These results show that treatment with anti-Nogo-A antibody significantly improves neuromuscular function in the SOD1(G93A) mouse model of ALS, at least during the earlier stages of disease and suggest that pharmacological inhibition of Nogo-A may be a disease-modifying approach in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/drug therapy , Antibodies/therapeutic use , Myelin Proteins/immunology , Superoxide Dismutase/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Antibodies/immunology , Disease Models, Animal , Disease Progression , Mice, Inbred C57BL , Mice, Transgenic , Motor Neurons/pathology , Muscle Fibers, Slow-Twitch/metabolism , Myelin Proteins/metabolism , Nogo Proteins , Superoxide Dismutase-1
10.
J Biol Chem ; 285(24): 18627-39, 2010 Jun 11.
Article in English | MEDLINE | ID: mdl-20382740

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a debilitating and fatal late-onset neurodegenerative disease. Familial cases of ALS (FALS) constitute approximately 10% of all ALS cases, and mutant superoxide dismutase 1 (SOD1) is found in 15-20% of FALS. SOD1 mutations confer a toxic gain of unknown function to the protein that specifically targets the motor neurons in the cortex and the spinal cord. We have previously shown that the autosomal dominant Legs at odd angles (Loa) mutation in cytoplasmic dynein heavy chain (Dync1h1) delays disease onset and extends the life span of transgenic mice harboring human mutant SOD1(G93A). In this study we provide evidence that despite the lack of direct interactions between mutant SOD1 and either mutant or wild-type cytoplasmic dynein, the Loa mutation confers significant reductions in the amount of mutant SOD1 protein in the mitochondrial matrix. Moreover, we show that the Loa mutation ameliorates defects in mitochondrial respiration and membrane potential observed in SOD1(G93A) motor neuron mitochondria. These data suggest that the Loa mutation reduces the vulnerability of mitochondria to the toxic effects of mutant SOD1, leading to improved mitochondrial function in SOD1(G93A) motor neurons.


Subject(s)
Disease Models, Animal , Dyneins/genetics , Mitochondria/metabolism , Motor Neuron Disease/metabolism , Mutation , Superoxide Dismutase/genetics , Animals , Cytoplasm/metabolism , Female , Heterozygote , Membrane Potentials , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Neurons/metabolism , Superoxide Dismutase-1
11.
PLoS One ; 5(3): e9541, 2010 Mar 08.
Article in English | MEDLINE | ID: mdl-20221404

ABSTRACT

BACKGROUND: Since the discovery that mutations in the enzyme SOD1 are causative in human amyotrophic lateral sclerosis (ALS), many strategies have been employed to elucidate the toxic properties of this ubiquitously expressed mutant protein, including the generation of GFP-SOD1 chimaeric proteins for studies in protein localization by direct visualization using fluorescence microscopy. However, little is known about the biochemical and physical properties of these chimaeric proteins, and whether they behave similarly to their untagged SOD1 counterparts. METHODOLOGY/PRINCIPAL FINDINGS: Here we compare the physicochemical properties of SOD1 and the effects of GFP-tagging on its intracellular behaviour. Immunostaining demonstrated that SOD1 alone and GFP-SOD1 have an indistinguishable intracellular distribution in PC12 cells. Cultured primary motor neurons expressing GFP or GFP-SOD1 showed identical patterns of cytoplasmic expression and of movement within the axon. However, GFP tagging of SOD1 was found to alter some of the intrinsic properties of SOD1, including stability and specific activity. Evaluation of wildtype and mutant SOD1, tagged at either the N- or C-terminus with GFP, in PC12 cells demonstrated that some chimaeric proteins were degraded to the individual proteins, SOD1 and GFP. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that most, but not all, properties of SOD1 remain the same with a GFP tag.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Gene Expression Regulation, Enzymologic , Green Fluorescent Proteins/metabolism , Superoxide Dismutase/metabolism , Animals , Circular Dichroism , Dimerization , Genetic Variation , Humans , Motor Neurons/metabolism , Mutation , Open Reading Frames , PC12 Cells , Protein Structure, Tertiary , Rats , Superoxide Dismutase-1
12.
PLoS One ; 4(7): e6218, 2009 Jul 13.
Article in English | MEDLINE | ID: mdl-19593442

ABSTRACT

BACKGROUND: In humans, mutations in the enzyme glycyl-tRNA synthetase (GARS) cause motor and sensory axon loss in the peripheral nervous system, and clinical phenotypes ranging from Charcot-Marie-Tooth neuropathy to a severe infantile form of spinal muscular atrophy. GARS is ubiquitously expressed and may have functions in addition to its canonical role in protein synthesis through catalyzing the addition of glycine to cognate tRNAs. METHODOLOGY/PRINCIPAL FINDINGS: We have recently described a new mouse model with a point mutation in the Gars gene resulting in a cysteine to arginine change at residue 201. Heterozygous Gars(C201R/+) mice have locomotor and sensory deficits. In an investigation of genetic mutations that lead to death of motor and sensory neurons, we have crossed the Gars(C201R/+) mice to two other mutants: the TgSOD1(G93A) model of human amyotrophic lateral sclerosis and the Legs at odd angles mouse (Dync1h1(Loa)) which has a defect in the heavy chain of the dynein complex. We found the Dync1h1(Loa/+);Gars(C201R/+) double heterozygous mice are more impaired than either parent, and this is may be an additive effect of both mutations. Surprisingly, the Gars(C201R) mutation significantly delayed disease onset in the SOD1(G93A);Gars(C201R/+) double heterozygous mutant mice and increased lifespan by 29% on the genetic background investigated. CONCLUSIONS/SIGNIFICANCE: These findings raise intriguing possibilities for the study of pathogenetic mechanisms in all three mouse mutant strains.


Subject(s)
Dyneins/physiology , Glycine-tRNA Ligase/metabolism , Motor Neuron Disease/enzymology , Mutation , Superoxide Dismutase/metabolism , Animals , Base Sequence , DNA Primers , Disease Models, Animal , Dyneins/genetics , Female , Glycine-tRNA Ligase/genetics , Heterozygote , Male , Mice , Mice, Mutant Strains , Motor Neuron Disease/genetics , Motor Neuron Disease/metabolism , Phenotype , Superoxide Dismutase/genetics
13.
Dis Model Mech ; 2(7-8): 359-73, 2009.
Article in English | MEDLINE | ID: mdl-19470612

ABSTRACT

Mutations in the enzyme glycyl-tRNA synthetase (GARS) cause motor and sensory axon loss in the peripheral nervous system in humans, described clinically as Charcot-Marie-Tooth type 2D or distal spinal muscular atrophy type V. Here, we characterise a new mouse mutant, Gars(C201R), with a point mutation that leads to a non-conservative substitution within GARS. Heterozygous mice with a C3H genetic background have loss of grip strength, decreased motor flexibility and disruption of fine motor control; this relatively mild phenotype is more severe on a C57BL/6 background. Homozygous mutants have a highly deleterious set of features, including movement difficulties and death before weaning. Heterozygous animals have a reduction in axon diameter in peripheral nerves, slowing of nerve conduction and an alteration in the recovery cycle of myelinated axons, as well as innervation defects. An assessment of GARS levels showed increased protein in 15-day-old mice compared with controls; however, this increase was not observed in 3-month-old animals, indicating that GARS function may be more crucial in younger animals. We found that enzyme activity was not reduced detectably in heterozygotes at any age, but was diminished greatly in homozygous mice compared with controls; thus, homozygous animals may suffer from a partial loss of function. The Gars(C201R) mutation described here is a contribution to our understanding of the mechanism by which mutations in tRNA synthetases, which are fundamentally important, ubiquitously expressed enzymes, cause axonopathy in specific sets of neurons.


Subject(s)
Charcot-Marie-Tooth Disease/genetics , Glycine-tRNA Ligase/genetics , Motor Neurons/pathology , Mutation , Sensory Receptor Cells/pathology , Amino Acid Sequence , Animals , Disease Models, Animal , Ethylnitrosourea/pharmacology , Female , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Molecular Sequence Data , Phenotype , Sequence Homology, Amino Acid
14.
Neurosci Lett ; 447(2-3): 172-4, 2008 Dec 12.
Article in English | MEDLINE | ID: mdl-18840504

ABSTRACT

Huntington's disease is an autosomal dominant neurodegenerative disorder caused by the expansion of a polyglutamine repeat tract in the huntingtin protein. Polyglutamine-expanded huntingtin forms intranuclear as well as perinuclear inclusion bodies. Perinuclear aggregates formed by polyglutamine-expanded proteins are associated with a characteristic indentation of the nuclear envelope. We examined the nuclear envelope in cells containing huntingtin aggregates using immunostaining for lamin B1, a major component of the nuclear lamina. Laser confocal microscopy analysis revealed that huntingtin aggregates in a juxtanuclear position were associated with a clear focal distortion in the nuclear envelope in cells transfected with polyglutamine-expanded huntingtin. Lamin B1 distribution was not altered by aggregates of polyglutamine-expanded ataxin-1, that are exclusively intranuclear. Thus lamin immunocytochemistry demonstrates clearly the depression of the nuclear envelope resulting from the formation of perinuclear aggregates by polyglutamine-expanded huntingtin. Lamin immunocytochemistry would be of value to monitor the state of the nuclear envelope in experimental paradigms aimed at establishing the significance of perinuclear aggregates of pathogenic proteins.


Subject(s)
Lamin Type B/metabolism , Nerve Tissue Proteins/metabolism , Nuclear Envelope/metabolism , Nuclear Proteins/metabolism , Animals , Ataxin-1 , Ataxins , CHO Cells/ultrastructure , Cricetinae , Cricetulus , Glutamine/metabolism , Green Fluorescent Proteins/genetics , Humans , Huntingtin Protein , Inclusion Bodies/genetics , Inclusion Bodies/metabolism , Microscopy, Confocal/methods , Nerve Tissue Proteins/genetics , Nuclear Envelope/genetics , Nuclear Proteins/genetics , Peptides/genetics , Transfection/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...