Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Learn Mem ; 212: 107941, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768684

ABSTRACT

Categorization requires a balance of mechanisms that can generalize across common features and discriminate against specific details. A growing literature suggests that the hippocampus may accomplish these mechanisms by using fundamental mechanisms like pattern separation, pattern completion, and memory integration. Here, we assessed the role of the rodent dorsal hippocampus (HPC) in category learning by combining inhibitory DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) and simulations using a neural network model. Using touchscreens, we trained rats to categorize distributions of visual stimuli containing black and white gratings that varied along two continuous dimensions. Inactivating the dorsal HPC impaired category learning and generalization, suggesting that the rodent HPC plays an important role during categorization. Hippocampal inactivation had no effect on a control discrimination task that used identical trial procedures as the categorization tasks, suggesting that the impairments were specific to categorization. Model simulations were conducted with variants of a neural network to assess the impact of selective deficits on category learning. The hippocampal inactivation groups were best explained by a model that injected random noise into the computation that compared the similarity between category stimuli and existing memory representations. This model is akin to a deficit in mechanisms of pattern completion, which retrieves similar memory representations using partial information.


Subject(s)
Hippocampus , Animals , Hippocampus/physiology , Rats , Male , Rats, Long-Evans , Discrimination Learning/physiology , Pattern Recognition, Visual/physiology , Generalization, Psychological/physiology
2.
Neurobiol Learn Mem ; 199: 107732, 2023 03.
Article in English | MEDLINE | ID: mdl-36764646

ABSTRACT

Categorization is an adaptive cognitive function that allows us to generalize knowledge to novel situations. Converging evidence from neuropsychological, neuroimaging, and neurophysiological studies suggest that categorization is mediated by the basal ganglia; however, there is debate regarding the necessity of each subregion of the basal ganglia and their respective functions. The current experiment examined the roles of the dorsomedial striatum (DMS; homologous to the head of the caudate nucleus) and dorsolateral striatum (DLS; homologous to the body and tail of the caudate nucleus) in category learning by combining selective lesions with computational modeling. Using a touchscreen apparatus, rats were trained to categorize distributions of visual stimuli that varied along two continuous dimensions (i.e., spatial frequency and orientation). The tasks either required attention to one stimulus dimension (spatial frequency or orientation; 1D tasks) or both stimulus dimensions (spatial frequency and orientation; 2D tasks). Rats with NMDA lesions of the DMS were impaired on both the 1D tasks and 2D tasks, whereas rats with DLS lesions showed no impairments. The lesions did not affect performance on a discrimination task that had the same trial structure as the categorization tasks, suggesting that the category impairments effected processes relevant to categorization. Model simulations were conducted using a neural network to assess the effect of the DMS lesions on category learning. Together, the results suggest that the DMS is critical to map category representations to appropriate behavioral responses, whereas the DLS is not necessary for categorization.


Subject(s)
Corpus Striatum , Neostriatum , Rats , Animals , Neostriatum/physiology , Corpus Striatum/physiology , Learning
3.
Cognition ; 218: 104920, 2022 01.
Article in English | MEDLINE | ID: mdl-34619516

ABSTRACT

COVIS (COmpetition between Verbal and Implicit Systems; Ashby, Alfonso-Reese, & Waldron, 1998) is a prominent model of categorization which hypothesizes that humans have two independent categorization systems - one declarative, one associative - that can be recruited to solve category learning tasks. To date, most COVIS-related research has focused on just two experimental tasks: linear rule-based (RB) tasks, which purportedly encourage declarative rule use, and linear information-integration (II) tasks, which purportedly require associative learning mechanisms. We introduce and investigate a novel alternative: the concentric-rings task, a nonlinear category structure that both humans and pigeons can successfully learn and transfer to untrained exemplars. Yet, despite their broad behavioral similarities, humans and pigeons achieve their successful learning through decidedly different means. As predicted by COVIS, pigeons appear to rely solely on associative learning mechanisms, whereas humans appear to initially test but subsequently reject unidimensional rules. We discuss how variants of our concentric-rings task might yield further insights into which category-learning mechanisms are shared across species, as well as how categorization strategies might change throughout training.


Subject(s)
Columbidae , Learning , Animals , Concept Formation , Humans , Problem Solving
4.
Neurobiol Learn Mem ; 185: 107524, 2021 11.
Article in English | MEDLINE | ID: mdl-34560284

ABSTRACT

Category learning groups stimuli according to similarity or function. This involves finding and attending to stimulus features that reliably inform category membership. Although many of the neural mechanisms underlying categorization remain elusive, models of human category learning posit that prefrontal cortex plays a substantial role. Here, we investigated the role of the prelimbic cortex (PL) in rat visual category learning by administering excitotoxic lesions before category training and then evaluating the effects of the lesions with computational modeling. Using a touchscreen apparatus, rats (female and male) learned to categorize distributions of category stimuli that varied along two continuous dimensions. For some rats, categorizing the stimuli encouraged selective attention towards a single stimulus dimension (i.e., 1D tasks). For other rats, categorizing the stimuli required divided attention towards both stimulus dimensions (i.e., 2D tasks). Testing sessions then examined generalization to novel exemplars. PL lesions impaired learning and generalization for the 1D tasks, but not the 2D tasks. Then, a neural network was fit to the behavioral data to examine how the lesions affected categorization. The results suggest that the PL facilitates category learning by maintaining attention to category-relevant information and updating category representations.


Subject(s)
Attention/physiology , Concept Formation/physiology , Prefrontal Cortex/physiology , Animals , Conditioning, Operant/physiology , Female , Male , Photic Stimulation , Rats , Rats, Long-Evans
5.
Genes Brain Behav ; 20(1): e12665, 2021 01.
Article in English | MEDLINE | ID: mdl-32383519

ABSTRACT

Categorization is a fundamental cognitive function that organizes our experiences into meaningful "chunks." This category knowledge can then be generalized to novel stimuli and situations. Multiple clinical populations, including people with Parkinson's disease, amnesia, autism, ADHD and schizophrenia, have impairments in the acquisition and use of categories. Although rodent research is well suited for examining the neural mechanisms underlying cognitive functions, many rodent cognitive tasks have limited translational value. To bridge this gap, we use touchscreens to permit greater flexibility in stimulus presentation and task design, track key dependent measures, and minimize experimenter involvement. Touchscreens offer a valuable tool for creating rodent cognitive tasks that are directly comparable to tasks used with humans. Touchscreen tasks are also readily used with cutting-edge neuroscientific methods that are difficult to do in humans such as optogenetics, chemogenetics, neurophysiology and calcium imaging (using miniscopes). In this review, we show advantages of touchscreen-based tasks for studying category learning in rats. We also address multiple factors for consideration when designing category learning tasks, including the limitations of the rodent visual system, experimental design, and analysis strategies.


Subject(s)
Behavioral Research/methods , Generalization, Psychological , Rodentia/physiology , User-Computer Interface , Animals , Behavioral Research/instrumentation , Rodentia/psychology
6.
J Exp Psychol Anim Learn Cogn ; 46(2): 107-123, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31916780

ABSTRACT

A prominent model of categorization (Ashby, Alfonso-Reese, Turken, & Waldron, 1998) posits that 2 separate mechanisms-one declarative, one associative-can be recruited in category learning. These 2 systems can effectively be distinguished by 2 task structures: rule-based (RB) tasks are unidimensional and encourage analytic processing, whereas information-integration (II) tasks are bidimensional and encourage nonanalytic associative learning. Humans and nonhuman primates have been reported to learn RB tasks more quickly than II tasks; however, pigeons and rats have shown no learning speed differences are thus believed to lack the declarative system. In the present trio of experiments, we further explored pigeons' dimensional category learning. We replicated the finding that pigeons learn RB and II tasks at equal speeds. Further, we found that stimulus generalization performance was equivalent on both tasks. We also explored the effect of switching from one task to another. Task switches between phases of training as well as within individual training sessions posed little difficulty for pigeons; they quickly and flexibly switched their categorization responses with no cost in choice speed or accuracy. Together, our data indicate that, although pigeons may lack the capacity to form explicit dimensional rules, their associative learning system is both powerful and flexible. Further exploration of this associative system would help us better appreciate possible contributions of the declarative system. (PsycInfo Database Record (c) 2020 APA, all rights reserved).


Subject(s)
Association Learning/physiology , Behavior, Animal/physiology , Columbidae/physiology , Concept Formation/physiology , Executive Function/physiology , Generalization, Stimulus/physiology , Animals , Humans , Practice, Psychological , Psychomotor Performance
7.
Learn Mem ; 26(3): 84-92, 2019 03.
Article in English | MEDLINE | ID: mdl-30770465

ABSTRACT

A prominent theory of category learning, COVIS, posits that new categories are learned with either a declarative or procedural system, depending on the task. The declarative system uses the prefrontal cortex (PFC) to learn rule-based (RB) category tasks in which there is one relevant sensory dimension that can be used to establish a rule for solving the task, whereas the procedural system uses corticostriatal circuits for information integration (II) tasks in which there are multiple relevant dimensions, precluding use of explicit rules. Previous studies have found faster learning of RB versus II tasks in humans and monkeys but not in pigeons. The absence of a learning rate difference in pigeons has been attributed to their lacking a PFC. A major gap in this comparative analysis, however, is the lack of data from a nonprimate mammalian species, such as rats, that have a PFC but a less differentiated PFC than primates. Here, we investigated RB and II category learning in rats. Similar to pigeons, RB and II tasks were learned at the same rate. After reaching a learning criterion, wider distributions of stimuli were presented to examine generalization. A second experiment found equivalent RB and II learning with wider category distributions. Computational modeling revealed that rats extract and selectively attend to category-relevant information but do not consistently use rules to solve the RB task. These findings suggest rats are on a continuum of PFC function between birds and primates, with selective attention but limited ability to utilize rules relative to primates.


Subject(s)
Attention , Learning , Pattern Recognition, Visual , Animals , Female , Generalization, Psychological , Male , Models, Psychological , Rats, Long-Evans , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...