Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Appl Opt ; 62(1): 117-132, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36606857

ABSTRACT

Modern semiconductor structures reach sizes in the nanometer regime. Optical metrology characterizes test structures for the quality assessment of semiconductor fabrication. The limits of radiation to resolve nanometer structure sizes can be overcome by shortening the wavelength. The compact source extreme ultraviolet (EUV) scatterometer presented here characterizes samples in the EUV spectral range using plasma radiation. Reference measurements with synchrotron radiation are carried out using a beamline scatterometer. A comparison including Markov chain Monte Carlo sampling shows that the compact source and beamline setups can both determine the given dimensional parameters of a nanoscale grating with uncertainties in the sub-nanometer range. Grating characterization based on soft x ray scattering has increased accuracy.

2.
Appl Opt ; 61(11): 3026-3033, 2022 Apr 10.
Article in English | MEDLINE | ID: mdl-35471276

ABSTRACT

In this paper, the design of an efficient illuminator for extreme ultraviolet (EUV) applications such as photolithography, metrology, and microscopy is investigated. Illuminators are arrangements of optical components that allow us to tailor optical parameters to a targeted application. For the EUV spectral range, illuminators are commonly realized by an arrangement of several multilayer mirrors. Within this publication, design methods are developed to tailor optical parameters such as the intensity distribution, the spatial coherence, and the spectral bandwidth by using only one multilayer mirror. For the demonstration of the methods, an illuminator is designed for a compact in-lab EUV interference lithography system that is suited for industrial EUV resist qualification and large-area nanopatterning. The designed illuminator increases the wafer-throughput and improves the imaging quality.

3.
Opt Express ; 28(18): 27000-27012, 2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32906962

ABSTRACT

The potential of extreme ultraviolet (EUV) computational proximity lithography for fabrication of arbitrary nanoscale patterns is investigated. We propose to use a holographic mask (attenuating phase shifting mask) consisting of structures of two phase levels. This approach allows printing of arbitrary, non-periodic structures without using high-resolution imaging optics. The holographic mask is designed for a wavelength of 13.5 nm with a conventional high-resolution electron beam resist as the phase shifting medium (pixel size 50 nm). The imaging performance is evaluated by using EUV radiation with different degrees of spatial coherence. Therefore exposures on identical masks are carried out with both undulator radiation at a synchrotron facility and plasma-based radiation at a laboratory setup.

4.
Opt Express ; 28(14): 20489-20502, 2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32680107

ABSTRACT

The authors present a study on the dimensional characterization of nanoscale line gratings by spectroscopic reflectometry in the extreme ultraviolet spectral range (5 nm to 20 nm wavelength). The investigated grating parameters include the line height, the line width, the sidewall angle and corner radii. The study demonstrates that the utilization of shorter wavelengths in state-of-the-art optical scatterometry provides a high sensitivity with respect to the geometrical dimensions of nanoscale gratings. Measurable contrasts are demonstrated for dimensional variations in the sub-percent regime, down to one tenth of a nanometer and one tenth of a degree in absolute terms. In an experimental validation of the method, it is shown that reflectance curves can be obtained in a stand-alone setup using the broadband emission of a discharge produced plasma as the source of EUV radiation, demonstrating the potential scalability of the method for industrial uses. Simulated reflectance curves are fit to the experimental curves by variation of the grating parameters using rigorous electromagnetic modeling. The obtained grating parameters are cross-checked by a scanning electron microscopy analysis.

5.
Opt Express ; 23(20): 25487-95, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26480066

ABSTRACT

We present a method for fabrication of large arrays of nano-antennas using extreme-ultraviolet (EUV) illumination. A discharge-produced plasma source generating EUV radiation around 10.88 nm wavelength is used for the illumination of a photoresist via a mask in a proximity printing setup. The method of metallic nanoantennas fabrication utilizes a bilayer photoresist and employs a lift-off process. The impact of Fresnel-diffraction of EUV light in the mask on a shape of the nanostructures has been investigated. It is shown how by the use of the same rectangular apertures in the transmission mask, antennas of various shapes can be fabricated. Using Fourier transform infrared spectroscopy, spectra of antennas reflectivity were measured and compared to FDTD simulations demonstrating good agreement.

SELECTION OF CITATIONS
SEARCH DETAIL