Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(19)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34640684

ABSTRACT

This paper covers the design of a new multi-point kinematic coupling specially developed for a high precision multi-telescopic arm measurement system for the volumetric verification of machine tools with linear and/or rotary axes. The multipoint kinematic coupling allows the simultaneous operation of the three telescopic arms that are registered at the same time to a sphere fixed on the machine tool spindle nose. Every coupling provides an accurate multi-point contact to the sphere, avoiding collisions and interferences with the other two multi-point kinematic couplings, and generating repulsion forces among them to ensure the coupling's fingers interlacing along the machine tool x/y/z travels in the verification process. Simulation presents minimal deformation of the kinematic coupling under load, assuring the precision of the sphere-to-sphere distance measurement. Experimental results are provided to show that the multi-point kinematic coupling developed has repeatability values below ±1.2 µm in the application.


Subject(s)
Arm , Biomechanical Phenomena
2.
Sensors (Basel) ; 20(13)2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32646000

ABSTRACT

This paper presents the design of a high precision telescopic system consisting in three lines, with measuring principle based on simultaneous laser multilateration. The system offers the high precision of the interferometer systems and allows the autonomous tracking of a sphere joined to the spindle nose of the machine tool by simultaneous contact of all the lines. The main advantage of the system is that it allows data capture to be carried out in a single cycle thanks to simultaneous operation with at least three telescopic arms using a novel multipoint kinematic coupling. This results in a significant reduction of the time taken for data capture and improves measurement accuracy due to avoiding the effect of temperature variations between cycles and machine tool repeatability. The work explains the working principle of the system, its main components, and the design parameters considered for the development of the system. The system is simple to operate, compact, agile, and suitable for the verification of small- or medium-sized machine tools with linear and/or rotary axes.

3.
Materials (Basel) ; 12(23)2019 Nov 29.
Article in English | MEDLINE | ID: mdl-31795339

ABSTRACT

Due to accuracy requirements, robots and machine-tools need to be periodically verified and calibrated through associated verification systems that sometimes use extensible guidance systems. This work presents the development of a reference artefact to evaluate the performance characteristics of different extensible precision guidance systems applicable to robot and machine tool verification. To this end, we present the design, modeling, manufacture and experimental validation of a reference artefact to evaluate the behavior of these extensible guidance systems. The system should be compatible with customized designed guides, as well as with commercial and existing telescopic guidance systems. Different design proposals are evaluated with finite element analysis, and two final prototypes are experimentally tested assuring that the design performs the expected function. An estimation of the uncertainty of the reference artefact is evaluated with a Monte Carlo simulation.

4.
Materials (Basel) ; 11(8)2018 Aug 07.
Article in English | MEDLINE | ID: mdl-30087250

ABSTRACT

Tapered roller bearings can accommodate high radial loads as well as high axial loads. The manufacturing process consists of machining processes for ring and component assembly. In this contribution, the parameters of influence on the measurement procedure were studied. These parameters of influence were classified as environmental, process, and machine parameters. The main objective of this work was to optimize the process using real-time measurements, which required the study of the influence of several parameters on the measurement uncertainty and how to correct their effects.

5.
Sensors (Basel) ; 11(1): 90-110, 2011.
Article in English | MEDLINE | ID: mdl-22346569

ABSTRACT

This article discusses different non contact 3D measuring strategies and presents a model for measuring complex geometry parts, manipulated through a robot arm, using a novel vision system consisting of a laser triangulation sensor and a motorized linear stage. First, the geometric model incorporating an automatic simple module for long term stability improvement will be outlined in the article. The new method used in the automatic module allows the sensor set up, including the motorized linear stage, for the scanning avoiding external measurement devices. In the measurement model the robot is just a positioning of parts with high repeatability. Its position and orientation data are not used for the measurement and therefore it is not directly "coupled" as an active component in the model. The function of the robot is to present the various surfaces of the workpiece along the measurement range of the vision system, which is responsible for the measurement. Thus, the whole system is not affected by the robot own errors following a trajectory, except those due to the lack of static repeatability. For the indirect link between the vision system and the robot, the original model developed needs only one first piece measuring as a "zero" or master piece, known by its accurate measurement using, for example, a Coordinate Measurement Machine. The strategy proposed presents a different approach to traditional laser triangulation systems on board the robot in order to improve the measurement accuracy, and several important cues for self-recalibration are explored using only a master piece. Experimental results are also presented to demonstrate the technique and the final 3D measurement accuracy.


Subject(s)
Lasers , Robotics , Automation , Optical Devices
SELECTION OF CITATIONS
SEARCH DETAIL
...