Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sustain Chem Eng ; 12(24): 9133-9143, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38910878

ABSTRACT

The persistence of photoresist residues from microfabrication procedures causes significant obstacles in the technological advancement of graphene-based electronic devices. These residues induce undesired chemical doping effects, diminish carrier mobility, and deteriorate the signal-to-noise ratio, making them critical in certain contexts, including sensing and electrical recording applications. In graphene solution-gated field-effect transistors (gSGFETs), the presence of polymer contaminants makes it difficult to perform precise electrical measurements, introducing response variability and calibration challenges. Given the absence of viable short to midterm alternatives to polymer-intensive microfabrication techniques, a postpatterning treatment involving THF and ethanol solvents was evaluated, with ethanol being the most effective, environmentally sustainable, and safe method for residue removal. Employing a comprehensive analysis with XPS, AFM, and Raman spectroscopy, together with electrical characterization, we investigated the influence of residual polymers on graphene surface properties and transistor functionality. Ethanol treatment exhibited a pronounced enhancement in gSGFET performance, as evidenced by a shift in the charge neutrality point and reduced dispersion. This systematic cleaning methodology holds the potential to improve the reproducibility and precision in the manufacturing of graphene devices. Particularly, by using ethanol for residue removal, we align our methodology with the principles of green chemistry, minimizing environmental impact while advancing diverse graphene technology applications.

2.
Small ; : e2308857, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38072781

ABSTRACT

Graphene solution-gated field-effect transistors (gSGFETs) offer high potential for chemical and biochemical sensing applications. Among the current trends to improve this technology, the functionalization processes are gaining relevance for its crucial impact on biosensing performance. Previous efforts are focused on simplifying the attachment procedure from standard multi-step to single-step strategies, but they still suffer from overreaction, and impurity issues and are limited to a particular ligand. Herein, a novel strategy for single-step immobilization of chemically modified aptamers with fluorenylmethyl and acridine moieties, based on a straightforward synthetic route to overcome the aforementioned limitations is presented. This approach is benchmarked versus a standard multi-step strategy using thrombin as detection model. In order to assess the reliability of the functionalization strategies 48-gSGFETs arrays are employed to acquire large datasets with multiple replicas. Graphene surface characterization demonstrates robust and higher efficiency in the chemical coupling of the aptamers with the single-step strategy, while the electrical response evaluation validates the sensing capability, allowing to implement different alternatives for data analysis and reduce the sensing variability. In this work, a new tool capable of overcome the functionalization challenges of graphene surfaces is provided, paving the way toward the standardization of gSGFETs for biosensing purposes.

3.
Nanoscale ; 15(41): 16650-16657, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37789811

ABSTRACT

In the last decade, solution-gated graphene field effect transistors (GFETs) showed their versatility in the development of a miniaturized multiplexed platform for electrophysiological recordings and sensing. Due to their working mechanism, the surface functionalisation and immobilisation of receptors are pivotal to ensure the proper functioning of devices. Herein, we present a controlled covalent functionalisation strategy based on molecular design and electrochemical triggering, which provide a monolayer-like functionalisation of micro-GFET arrays retaining the electronic properties of graphenes. The functionalisation layer as a receptor was then employed as the linker for serotonin aptamer conjugation. The micro-GFET arrays display sensitivity toward the target analyte in the micromolar range in a physiological buffer (PBS 10 mM). The sensor allows the in-flow real-time monitoring of serotonin transient concentrations with fast and reversible responses.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Graphite , Graphite/chemistry , Serotonin , Transistors, Electronic , Aptamers, Nucleotide/chemistry
4.
Anal Chim Acta ; 1088: 1-19, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31623704

ABSTRACT

Application of the impedance spectroscopy technique to detection of bacteria has advanced considerably over the last decade. This is reflected by the large amount of publications focused on basic research and applications of impedance biosensors. Employment of modern technologies to significantly reduce dimension of impedimetric devices enable on-chip integration of interdigitated electrode arrays for low-cost and easy-to-use sensors. This review is focused on publications dealing with interdigitated electrodes as a transducer unit and different bacteria detection systems using these devices. The first part of the review deals with the impedance technique principles, paying special attention to the use of interdigitated electrodes, while the main part of this work is focused on applications ranging from bacterial growth monitoring to label-free specific bacteria detection.


Subject(s)
Bacteria/isolation & purification , Microbiology/instrumentation , Transducers , Electric Impedance , Electrodes , Humans
5.
Biosens Bioelectron ; 86: 377-385, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27399935

ABSTRACT

Peri-implantitis, an inflammation caused by biofilm formation, constitutes a major cause of implant failure in dentistry. Thus, the detection of bacteria at the early steps of biofilm growth represents a powerful strategy to prevent implant-related infections. In this regard, antimicrobial peptides (AMPs) can be used as effective biological recognition elements to selectively detect the presence of bacteria. Thus, the aim of the present study was to combine the use of miniaturized and integrated impedimetric transducers and AMPs to obtain biosensors with high sensitivity to monitor bacterial colonization. Streptococcus sanguinis, which is one of the most prevalent strains in the onset of periodontal diseases, was used as a model of oral bacteria. To this end, a potent AMP derived from human lactoferrin was synthesized and covalently immobilized on interdigitated electrode arrays (IDEA). X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS) were employed to optimize and characterize the method of immobilization. Noteworthy, the interaction of Streptococcus sanguinis with AMP-coated sensors provoked significant changes in the impedance spectra, which were univocally associated with the presence of bacteria, proving the feasibility of our method. In this regard, the developed biosensor permits to detect the presence of bacteria at concentrations starting from 10(1) colony forming units (CFU)mL(-1) in KCl and from 10(2) CFUmL(-1) in artificial saliva. Moreover, the system was devoid of cytotoxicity for human fibroblasts. These results indicate that the proposed approach can be effective in the detection of initial stages of biofilm formation, and may be useful in the early prevention and treatment of peri-implantitis.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Bacterial Typing Techniques/instrumentation , Dielectric Spectroscopy/instrumentation , Peri-Implantitis/microbiology , Saliva/microbiology , Streptococcus sanguis/isolation & purification , Antimicrobial Cationic Peptides/chemistry , Biological Assay/instrumentation , Biosensing Techniques/instrumentation , Early Diagnosis , Equipment Design , Equipment Failure Analysis , Humans , Peri-Implantitis/diagnosis , Reproducibility of Results , Sensitivity and Specificity , Streptococcus sanguis/drug effects , Streptococcus sanguis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...