Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Technol Des Educ ; 33(2): 663-683, 2023.
Article in English | MEDLINE | ID: mdl-36160827

ABSTRACT

Due to a rapidly transforming world, design education needs to adjust itself. To do so, it is essential to understand curriculum gaps in the discipline. This systematic review (n = 95) reports on these gaps and the future readiness of design curricula. The search strategy consisted of both a database search, and discipline-specific journal search in which generalised results about current or future perspectives of design education were found. Structured around the constructive alignment framework, this research found that more 21st century learning objectives focusing on skills next to domain-specific knowledge need to be incorporated, and teaching and learning activities need to be more student-centred and better aligned to industry. Related to assessment, a considerable gap was found in literature on guidelines and means for formative assessment. Design education is not yet ready for the challenges ahead, therefore, the authors hope that design departments rethink their curricula and fill the specified gaps.

2.
Sensors (Basel) ; 21(13)2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34283163

ABSTRACT

Monitoring climate change, and its impacts on ecological, agricultural, and other societal systems, is often based on temperature data derived from official weather stations. Yet, these data do not capture most microclimates, influenced by soil, vegetation and topography, operating at spatial scales relevant to the majority of organisms on Earth. Detecting and attributing climate change impacts with confidence and certainty will only be possible by a better quantification of temperature changes in forests, croplands, mountains, shrublands, and other remote habitats. There is an urgent need for a novel, miniature and simple device filling the gap between low-cost devices with manual data download (no instantaneous data) and high-end, expensive weather stations with real-time data access. Here, we develop an integrative real-time monitoring system for microclimate measurements: MIRRA (Microclimate Instrument for Real-time Remote Applications) to tackle this problem. The goal of this platform is the design of a miniature and simple instrument for near instantaneous, long-term and remote measurements of microclimates. To that end, we optimised power consumption and transfer data using a cellular uplink. MIRRA is modular, enabling the use of different sensors (e.g., air and soil temperature, soil moisture and radiation) depending upon the application, and uses an innovative node system highly suitable for remote locations. Data from separate sensor modules are wirelessly sent to a gateway, thus avoiding the drawbacks of cables. With this sensor technology for the long-term, low-cost, real-time and remote sensing of microclimates, we lay the foundation and open a wide range of possibilities to map microclimates in different ecosystems, feeding a next generation of models. MIRRA is, however, not limited to microclimate monitoring thanks to its modular and wireless design. Within limits, it is suitable or any application requiring real-time data logging of power-efficient sensors over long periods of time. We compare the performance of this system to a reference system in real-world conditions in the field, indicating excellent correlation with data collected by established data loggers. This proof-of-concept forms an important foundation to creating the next version of MIRRA, fit for large scale deployment and possible commercialisation. In conclusion, we developed a novel wireless cost-effective sensor system for microclimates.


Subject(s)
Ecosystem , Microclimate , Climate Change , Cost-Benefit Analysis , Forests
SELECTION OF CITATIONS
SEARCH DETAIL
...