Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 7(1): 134, 2024 01 27.
Article in English | MEDLINE | ID: mdl-38280942

ABSTRACT

Oligomeric clusters of amyloid-ß (Aß) are one of the major biomarkers for Alzheimer's disease (AD). However, proficient methods to detect Aß-oligomers in brain tissue are lacking. Here we show that synthetic M13 bacteriophages displaying Aß-derived peptides on their surface preferentially interact with Aß-oligomers. When exposed to brain tissue isolated from APP/PS1-transgenic mice, these bacteriophages detect small-sized Aß-aggregates in hippocampus at an early age, prior to the occurrence of Aß-plaques. Similarly, the bacteriophages reveal the presence of such small Aß-aggregates in post-mortem hippocampus tissue of AD-patients. These results advocate bacteriophages displaying Aß-peptides as a convenient and low-cost tool to identify Aß-oligomers in post-mortem brain tissue of AD-model mice and AD-patients.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Mice , Animals , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Bacteriophage M13/metabolism , Mice, Transgenic , Brain/metabolism
2.
Alzheimers Dement ; 20(3): 1637-1655, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38055782

ABSTRACT

INTRODUCTION: Early-life stress (ES) increases the risk for Alzheimer's disease (AD). We and others have shown that ES aggravates amyloid-beta (Aß) pathology and promotes cognitive dysfunction in APP/PS1 mice, but underlying mechanisms remain unclear. METHODS: We studied how ES affects the hippocampal synaptic proteome in wild-type (WT) and APP/PS1 mice at early and late pathological stages, and validated hits using electron microscopy and immunofluorescence. RESULTS: The hippocampal synaptosomes of both ES-exposed WT and early-stage APP/PS1 mice showed a relative decrease in actin dynamics-related proteins and a relative increase in mitochondrial proteins. ES had minimal effects on older WT mice, while strongly affecting the synaptic proteome of advanced stage APP/PS1 mice, particularly the expression of astrocytic and mitochondrial proteins. DISCUSSION: Our data show that ES and amyloidosis share pathogenic pathways involving synaptic mitochondrial dysfunction and lipid metabolism, which may underlie the observed impact of ES on the trajectory of AD.


Subject(s)
Adverse Childhood Experiences , Alzheimer Disease , Amyloidosis , Mice , Animals , Lipid Metabolism , Mice, Transgenic , Proteome , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloidosis/metabolism , Mitochondria , Mitochondrial Proteins , Disease Models, Animal , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Presenilin-1/metabolism
3.
Biol Psychiatry ; 95(8): 721-731, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-37977215

ABSTRACT

Stress modulates the activity of various memory systems and can thereby guide behavioral interaction with the environment in an adaptive or maladaptive manner. At the cellular level, a large body of evidence indicates that (nor)adrenaline and glucocorticoid release induced by acute stress exposure affects synapse function and synaptic plasticity, which are critical substrates for learning and memory. Recent evidence suggests that memories are supported in the brain by sparsely distributed neurons within networks, termed engram cell ensembles. While the physiological and molecular effects of stress on the synapse are increasingly well characterized, how these synaptic modifications shape the multiscale dynamics of engram cell ensembles is still poorly understood. In this review, we discuss and integrate recent information on how acute stress affects synapse function and how this may alter engram cell ensembles and their synaptic connectivity to shape memory strength and memory precision. We provide a mechanistic framework of a synaptic engram under stress and put forward outstanding questions that address knowledge gaps in our understanding of the mechanisms that underlie stress-induced memory modulation.


Subject(s)
Learning , Memory , Memory/physiology , Neurons/physiology , Neuronal Plasticity/physiology , Synapses/physiology
4.
J Alzheimers Dis ; 96(3): 1097-1113, 2023.
Article in English | MEDLINE | ID: mdl-37980670

ABSTRACT

BACKGROUND: Exposure to stress early in life increases the susceptibility to Alzheimer's disease (AD) pathology in aged AD mouse models. So far, the underlying mechanisms have remained elusive. OBJECTIVE: To investigate 1) effects of early life stress (ELS) on early functional signs that precede the advanced neuropathological changes, and 2) correlate synaptosomal protein content with cognition to identify neural correlates of AD. METHODS: APPswe/PS1dE9 mice and littermates were subjected to ELS by housing dams and pups with limited bedding and nesting material from postnatal days 2-9. At 3 months of age, an age where no cognitive loss or amyloid-ß (Aß) pathology is typically reported in this model, we assessed hippocampal Aß pathology, synaptic strength and synapse composition and interneuron populations. Moreover, cognitive flexibility was assessed and correlated with synaptosomal protein content. RESULTS: While ELS did not affect Aß pathology, it increased synaptic strength and decreased the number of calretinin+ interneurons in the hippocampal dentate gyrus. Both genotype and condition further affected the level of postsynaptic glutamatergic protein content. Finally, APP/PS1 mice were significantly impaired in cognitive flexibility at 3 months of age, and ELS exacerbated this impairment, but only at relatively high learning criteria. CONCLUSIONS: ELS reduced cognitive flexibility in young APP/PS1 mice and altered markers for synapse and network function. These findings at an early disease stage provide novel insights in AD etiology and in how ELS could increase AD susceptibility.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Animals , Male , Mice , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Cognitive Dysfunction/pathology , Disease Models, Animal , Interneurons , Mice, Transgenic , Plaque, Amyloid/pathology , Presenilin-1/genetics , Presenilin-1/metabolism , Synapses/metabolism , Stress, Physiological
5.
J Neuroendocrinol ; 35(12): e13346, 2023 12.
Article in English | MEDLINE | ID: mdl-37901923

ABSTRACT

Early postnatal life is a sensitive period of development that shapes brain structure and function later in life. Exposure to stress during this critical time window can alter brain development and may enhance the susceptibility to psychopathology and neurodegenerative disorders later in life. The developmental effects of early life stress (ELS) on synaptic function are not fully understood, but could provide mechanistic insights into how ELS modifies later brain function and disease risk. We here assessed the effects of ELS on synaptic function and composition in the hippocampus of male mice. Mice were subjected to ELS by housing dams and pups with limited bedding and nesting material from postnatal days (P) 2-9. Synaptic strength was measured in terms of miniature excitatory postsynaptic currents (mEPSCs) in the hippocampal dentate gyrus at three different developmental stages: the early postnatal phase (P9), preadolescence (P21, at weaning) and adulthood at 3 months of age (3MO). Hippocampal synaptosome fractions were isolated from P9 and 3MO tissue and analyzed for protein content to assess postsynaptic composition. Finally, dendritic spine density was assessed in the DG at 3MO. At P9, ELS increased mEPSC frequency and amplitude. In parallel, synaptic composition was altered as PSD-95, GluA3 and GluN2B content were significantly decreased. The increased mEPSC frequency was sustained up to 3MO, at which age, GluA3 content was significantly increased. No differences were found in dendritic spine density. These findings highlight how ELS affects the development of hippocampal synapses, which could provide valuable insight into mechanisms how ELS alters brain function later in life.


Subject(s)
Receptors, AMPA , Stress, Physiological , Synapses , Animals , Male , Mice , Animals, Newborn , Hippocampus/metabolism , Stress, Psychological/metabolism , Receptors, AMPA/metabolism
6.
Learn Mem ; 30(7): 125-132, 2023 07.
Article in English | MEDLINE | ID: mdl-37487708

ABSTRACT

Glucocorticoids are potent memory modulators that can modify behavior in an adaptive or maladaptive manner. Elevated glucocorticoid levels after learning promote memory consolidation at recent time points, but their effects on remote time points are not well established. Here we set out to assess whether corticosterone (CORT) given after learning modifies remote fear memory. To that end, mice were exposed to a mild auditory fear conditioning paradigm followed by a single 2 mg/kg CORT injection, and after 28 d, auditory memory was assessed. Neuronal activation was investigated using immunohistochemistry for the immediate early gene c-Fos, and coactivation of brain regions was determined using a correlation matrix analysis. CORT-treated mice displayed significantly less remote auditory memory retrieval. While the net activity of studied brain regions was similar compared with the control condition, CORT-induced remote memory impairment was associated with altered correlated activity between brain regions. Specifically, connectivity of the lateral amygdala with the basal amygdala and the dorsal dentate gyrus was significantly reduced in CORT-treated mice, suggesting disrupted network connectivity that may underlie diminished remote memory retrieval. Elucidating the pathways underlying these effects could help provide mechanistic insight into the effects of stress on memory and possibly provide therapeutic targets for psychopathology.


Subject(s)
Corticosterone , Memory , Animals , Mice , Brain , Memory, Long-Term , Fear , Glucocorticoids
7.
Biol Psychiatry ; 90(7): 494-504, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34503674

ABSTRACT

BACKGROUND: Traumatic experiences, such as conditioned threat, are coded as enduring memories that are frequently subject to generalization, which is characterized by (re-) expression of fear in safe environments. However, the neurobiological mechanisms underlying threat generalization after a traumatic experience and the role of stress hormones in this process remain poorly understood. METHODS: We examined the influence of glucocorticoid hormones on the strength and specificity of conditioned fear memory at the level of sparsely distributed dentate gyrus (DG) engram cells in male mice. RESULTS: We found that elevating glucocorticoid hormones after fear conditioning induces a generalized contextual fear response. This was accompanied by a selective and persistent increase in the excitability and number of activated DG granule cells. Selective chemogenetic suppression of these sparse cells in the DG prevented glucocorticoid-induced fear generalization and restored contextual memory specificity, while leaving expression of auditory fear memory unaffected. CONCLUSIONS: These results implicate the sparse ensemble of DG engram cells as a critical cellular substrate underlying fear generalization induced by glucocorticoid stress hormones.


Subject(s)
Dentate Gyrus , Glucocorticoids , Animals , Fear , Male , Mice , Mice, Inbred C57BL , Neurons
SELECTION OF CITATIONS
SEARCH DETAIL
...