Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
2.
Membranes (Basel) ; 13(6)2023 May 23.
Article in English | MEDLINE | ID: mdl-37367745

ABSTRACT

Photocatalytic membrane reactors (PMRs) are a promising technology that combines the benefits of photocatalysis and membrane separation [...].

3.
Environ Sci Pollut Res Int ; 30(26): 69042-69053, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37129828

ABSTRACT

The investigations on the removal of ibuprofen (IBU) in a hybrid system coupling ozonation and nanofiltration with functionalized catalytic ceramic membrane are presented. The gaseous ozone into feed water in concentration of 11 g Nm-3 was supplied. Positive influence of catalytic ozonation on ibuprofen decomposition was observed. The application of catalytic nanofiltration membrane led to the ibuprofen removal of 91% after the first 15 min from the beginning of the O3/NF process, while at the same time, for the pristine membrane, it was equal to 76%. The investigations revealed incomplete degradation of drug under pH 3 after 2 h, i.e., 89%. On the other hand, the addition of inorganic salts did not affect the catalytic ibuprofen removal efficiency. Under acidic pH, the highest permeate flux decline (26%) was noted, whereas no differences between permeate flux measured under natural and alkaline conditions were observed. During the treatment process, three IBU by-products were detected, which significantly affected the permeate toxicity; however, after 2 h of catalytic nanofiltration, the product of treatment process was found as non-toxic.


Subject(s)
Ozone , Water Pollutants, Chemical , Water Purification , Ibuprofen/chemistry , Water , Catalysis , Ozone/chemistry , Ceramics , Water Pollutants, Chemical/analysis
4.
Membranes (Basel) ; 13(2)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36837674

ABSTRACT

Recently, ozonation has been advocated as a solution to tackle emerging contaminants. Hollow fiber membrane contactors (HFMC) have a lower residual ozone concentration than bubble reactors that could limit the formation of potential ozonation by-products, especially bromates that are regulated in drinking water. The aim of this study was to evaluate ozonation with HFMC for pharmaceutical abatement and bromate minimization compared to bubble columns in wastewater. A HFMC, composed of 65 polytetrafluoroethylene hollow fibers with a 0.45 mm/0.87 mm inner/external diameter and a 0.107 m² exchange surface, was used for the ozonation of real-treated wastewater spiked with 2 µM of p-chlorobenzoic acid (p-CBA) and 3 mg.L-1 of bromide. p-CBA was tracked to monitor the production of strongly-oxidant hydroxyl radicals from the decomposition of the molecular ozone. At 100% p-CBA abatement, 1600 µg.L-1 of bromate was formed with the HFMC, whereas 3486 µg.L-1 was formed with the bubble column. These results demonstrate that HFMC can produce a significant amount of hydroxyl radicals while limiting bromate formation in real-treated wastewater. The test water was also spiked with carbamazepine and sulfamethoxazole to evaluate the abatement efficiency of the process. Short contact times (approximately 2s) achieved high rates of pharmaceuticals removal without bromate formation.

5.
Membranes (Basel) ; 12(5)2022 May 21.
Article in English | MEDLINE | ID: mdl-35629864

ABSTRACT

In the context of designing a photocatalytic self-cleaning/low-fouling membrane, the stability of PVDF-PVP-TiO2 hollow-fiber membranes under UV irradiation has been studied. The effect of irradiation power, aqueous environment composition and fouling state on the properties of the membranes has been investigated. With this aim, SEM observations, chemical analysis and tensile strength measurements have been conducted. The results indicate that pristine membranes that undergo UV irradiation in ultra-pure water are significantly degraded due to attacks of OH° radicals. However, when methylene blue, used as a model pollutant, is introduced in the aqueous environment, OH° radicals preferentially react with this molecule rather than the membranes, successfully preserving the original properties of the latter. The presence of an adsorbed BSA layer (pre-fouling by immersion) on the surface of the membrane delays membrane aging, as the BSA layer is degraded by radicals instead of the membrane material. The degradation of the BSA layer also validates the self-cleaning properties of the membrane. However, when membranes are pre-fouled by filtration of a 2 g/L BSA solution, delay to aging is less. This is because OH° radicals do not reach BSA molecules that are trapped inside the membrane pores, and therefore react with the membrane material.

6.
Membranes (Basel) ; 12(3)2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35323816

ABSTRACT

This study aimed to investigate the impact of real MBR effluent pre-ozonation on nanofiltration performances. Nanofiltration experiments were separately run with non-ozonated real MBR effluent, ozonated real MBR effluent and synthetic ionic solution mimicking the ionic composition of the real MBR effluent. The specific UV absorbance and the chemical oxygen demand were monitored during ozonation of real effluent, and the mineralization rate was calculated through the quantitative analysis of dissolved organic carbon. The membrane structure was characterized using SEM on virgin and fouled membrane surfaces and after different cleaning steps. The results confirm the low effect of the ozonation process in terms of organic carbon mineralization. However, the chemical oxygen demand and the specific UV absorbance were decreased by 50% after ozonation, demonstrating the efficiency of ozonation in degrading a specific part of the organic matter fraction. A benefic effect of pre-ozonation was observed, as it limits both fouling and flux decrease. This study shows that the partial mineralization of dissolved and colloidal organic matter by ozonation could have a positive effect on inorganic scaling and decrease severe NF membrane fouling.

7.
Membranes (Basel) ; 12(2)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35207166

ABSTRACT

In this study, the anti-fouling performance of PVDF-TiO2 composite membranes, indicated by their permeate flux, was studied with different types of synthetic feed solutions. Photo-filtration (filtration under continuous UV irradiation) of solutions containing inorganic and organic components, which are ubiquitous in drinking/natural water, was performed to evaluate their influence on the photo-induced properties and performance of the membranes. The results indicated that inorganic fouling was unlikely to occur on PVDF-TiO2 membranes, and the presence of common inorganic ions in drinking water did not hinder their performance. However, in the particular case where a small amount of Cu2+ coexisted alongside HCO3- in the feed solution, inorganic fouling occurred, causing severe flux decline and prohibiting the photo-induced properties of the membranes. On the other hand, when used to filter organic fouling solutions, the membranes showed strong resistance to sodium alginate fouling, and less so for humic acids. In terms of separation efficiency, the membranes showed no advantages when operated in photo-filtration mode, as the rejection rate of both foulants under photo-filtration was not higher than that under normal filtration. In the case of humic acids, the photodegradation of humic substances into smaller compounds that were able to enter the permeate stream led to a lower rejection rate. Nevertheless, photo-filtration of these organic foulants still offered a higher permeate flux than normal filtration, up to a certain concentration level (5 mg/L for humic acids and 50 mg/L for sodium alginate).

8.
Membranes (Basel) ; 11(11)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34832106

ABSTRACT

Composite PVDF-TiO2 membranes are studied extensively in literature as effective anti-fouling membranes with photocatalytic properties. Yet, a full understanding of how preparation parameters affect the final membrane structure, properties and performance has not been realized. In this study, PVDF-TiO2 membranes (20 wt% TiO2/PVDF) were fabricated via the non-solvent-induced phase separation (NIPS) method with an emphasis on the preparation temperature. Then, a systematic approach was employed to study the evolution of the membrane formation process and membrane properties when the preparation temperature changed, as well as to establish a link between them. Typical asymmetric membranes with a high porosity were obtained, along with a vast improvement in the permeate flux compared to the neat PVDF membranes, but a reduction in mechanical strength was also observed. Interestingly, upon the increase in preparation temperature, a significant transition in membrane morphology was observed, notably the gradual diminution of the finger-like macrovoids. Other membrane properties such as permeability, porosity, thermal and mechanical properties, and compression behavior were also influenced accordingly. Together, the establishment of the ternary phase diagrams, the study of solvent-nonsolvent exchange rate, and the direct microscopic observation of membrane formation during phase separation, helped explain such evolution in membrane properties.

9.
Sci Total Environ ; 729: 138664, 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32380322

ABSTRACT

Membrane contactor is a device generally used for the removal or the absorption of a gas into another fluid. The membrane acts as a barrier between the two phases and mass transfer occurs by diffusion and not by dispersion. This article is a review of the application of membrane contactor technology for ozonation applied to water treatment. The challenge of removing micropollutants is also discussed. In the first part, the ozonation process is mentioned, in particular chemical reactions induced by ozone and its advantages and disadvantages. In the second part, generalities on membrane contactor technology using hollow fibers are presented. Then, the benefit of using a membrane contactor for the elimination of micropollutants is shown through a critical analysis of the influence of several parameters on the ozonation efficiency. The impact of the membrane material is also highlighted. Finally, several modeling approaches are presented as a tool for a better understanding of the phenomena occurring in the contactor and a possible optimization of this process.

10.
Chemosphere ; 245: 125530, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31881388

ABSTRACT

Advanced processes for the removal of organic micropollutants (OMPs) from wastewater effluents include adsorption onto activated carbon, ozonation, or a combination of both processes. The removal of 28 OMPs present in a real wastewater effluent was studied by ozonation coupled to activated carbon adsorption and compared to a sole adsorption. The influence of the specific ozone dose (0.09-1.29 gO3/gDOC) and the influence of the powdered activated carbon (PAC) dose (2, 5 and 10 mg/L) were first studied separately. OMPs removal increased with both the specific ozone dose (up to 80% for a dose higher than 0.60 gO3/gDOC) and the PAC dose. Ozonation performances decreased in presence of suspended solids, which were converted to dissolved organic carbon. A correction of the specific ozone dose according to the suspended solids levels, in addition to nitrite, should be considered. The influence of ozonation (0.09, 0.22, 0.94 and 1.29 gO3/gDOC) on OMPs adsorption was then assessed. OMPs adsorption didn't change at low specific ozone doses but increased at higher specific ozone doses due to a decrease in DOM adsorption and competition with OMPs. At low ozone doses followed by adsorption (0.22 gO3/gDOC and 10 mg/L PAC), the two processes appeared complementary as OMPs with a low reactivity toward ozone were well absorbed onto PAC while most OMPs refractory to adsorption were well eliminated by ozone. Improved removals were obtained for all compounds with these selected doses, reaching more than 80% removal for most OMPs while limiting the formation of bromate ion.


Subject(s)
Charcoal/chemistry , Ozone/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Adsorption , Bromates , Wastewater/chemistry , Water Purification
11.
J Hazard Mater ; 338: 381-393, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28586753

ABSTRACT

Considerable interest has been given to using nanofiltration (NF) in lieu of reverse osmosis for water reclamation schemes due to lower energy consumption, higher flux rates while ensuring good micropollutants rejection. The application NF results in the generation of a large concentrated waste stream. Treatment of the concentrate is a major hurdle for the implementation of membrane technologies since the concentrate is usually unusable due to a large pollutants content. This work focuses on the application of ozonation as pretreatment of urban NF concentrates, the generation of transformation products and their relative toxicity. Three pharmaceutical micropollutants largely encountered in water cycle were selected as target molecules: acetaminophen, carbamazepine and atenolol. Through accurate-mass Q-TOF LC-MS/MS analyses, more than twenty ozonation products were detected, structure proposals and formation pathways were elaborated. Attempts were made to understand the correlation between the transformation products and acute toxicity on Vibrio fischeri strain. It is the first time that an integrated study reported on the ozonation of pharmaceuticals in urban membrane concentrates, in terms of transformation products, kinetics, degradation mechanisms, as well as toxicity assessment.


Subject(s)
Filtration/methods , Membranes, Artificial , Nanotechnology , Ozone/chemistry , Salts/isolation & purification , Wastewater/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Acetaminophen/isolation & purification , Atenolol/isolation & purification , Carbamazepine/isolation & purification , Chromatography, Liquid , Osmosis , Salts/chemistry , Salts/toxicity , Tandem Mass Spectrometry , Toxicity Tests, Acute , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity
12.
Chemistry ; 22(48): 17262-17268, 2016 Nov 21.
Article in English | MEDLINE | ID: mdl-27734588

ABSTRACT

Metal oxides and metal oxide/carbon composites are entering the development of new technologies and should therefore to be prepared by sustainable chemistry processes. Therefore, a new aspect of the reactivity of cellulose is presented through its solid/gas reaction with vapour of titanium(IV) chloride in anhydrous conditions at low temperature (80 °C). This reaction leads to two transformations both for cellulose and titanium(IV) chloride. A reductive dehydration of cellulose is seen at the lowest temperature ever reported and results in the formation of a carbonaceous fibrous solid as the only carbon-containing product. Simultaneously, the in situ generation of water leads to the formation of titanium dioxide with an unexpected nanoplate morphology (ca. 50 nm thickness) and a high photocatalytic activity. We present the evidence showing the evolution of the cellulose and the TiO2 nanostructure formation, along with its photocatalytic activity. This low-temperature process avoids any other reagents and is among the greenest processes for the preparation of anatase and also for TiO2 /carbon composites. The anisotropic morphology of TiO2 questions the role of the cellulose on the growing process of these nanoparticles.

13.
Chemosphere ; 165: 497-506, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27681105

ABSTRACT

Global population growth induces increased threat on drinking water resources. One way to address this environmental issue is to reuse water from wastewater treatment plant. The presence of pathogenic microorganisms and potentially toxic organic micropollutants does not allow a direct reuse of urban effluents. Membrane processes such reverse osmosis (RO) or nanofiltration (NF) can be considered to effectively eliminate these pollutants. The integration of membrane processes involves the production of concentrated retentates which require being disposed. To date, no treatment is set up to manage safely this pollution. This work focuses on the application of ozonation for the treatment of NF retentates in the framework of the wastewater reuse. Ozonation is a powerful oxidation process able to react and degrade a wide range of organic pollutants. Four pharmaceutical micropollutants were selected as target molecules: acetaminophen, carbamazepine, atenolol and diatrozic acid. This study highlighted that NF represents a viable alternative to the commonly used RO process ensuring high retention at much lower operating costs. Ozonation appears to be effective to degrade the most reactive pollutants toward molecular ozone but is limited for the reduction of refractory ozone pollutants due to the inhibition of the radical chain by the high content of organic matter in the retentates. The ozonation process appears to be a promising NF retentate treatment, but additional treatments after ozonation are required to lead to a zero liquid discharge treatment scheme.


Subject(s)
Filtration/methods , Oxidants/chemistry , Ozone/chemistry , Water Pollutants, Chemical/chemistry , Acetaminophen/chemistry , Atenolol/chemistry , Carbamazepine/chemistry , Diatrizoate/chemistry , Nanotechnology , Oxidation-Reduction , Recycling , Waste Disposal, Fluid , Wastewater/chemistry , Water Purification
14.
Water Res ; 104: 156-167, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27522026

ABSTRACT

The objective of this paper is to help understanding the distinctive influence of the matrix and of the flux decline (e.g. through the cake enhanced concentration polarization (CECP) phenomenon) on the removal mechanisms of four pharmaceutically active compounds (PhACs) from wastewater treatment plant (WWTP) effluent by nanofiltration (NF). PhACs which are commonly encountered in secondary treated effluent were spiked in various matrix (real and synthetic) to investigate the separate and synergetic effects of the organic and ionic environment on PhACs rejection by two commercial membranes (NF-90 and NF-270). With pure water, rejection of NF membranes is dependent on the type of PhACs and of the permeate flux variations. Then, it appeared that the rejection of PhACs by NF-90 was poorly influenced by the type of compounds, because of the prevalence of steric mechanisms, but rather influenced by permeate flux variations and thus to fouling. For this tight NF membrane, CECP impacts PhACs rejection at the start of filtration while after a dense cake is formed, it became enhanced. On the contrary, rejections of PhACs by the NF-270 were enhanced during the filtration of the real wastewater in comparison with spiked pure water. It appeared that for loose-NF membranes, PhACs rejection is mainly governed by solute-solute interactions (EfOM-compound association) or electrostatic membrane-solute interactions. Finally, it seems that calcium concentration of the effluent is a critical parameter for the rejection of PhACs as it alters both the availability of sites for PhACs association and the fouling layer density. Rejections of the NF-270 were negatively impacted in the presence of Ca2+. Such a study has practical implications for further understanding of the fate of trace organic compounds during nanofiltration of wastewater for reuse applications.


Subject(s)
Wastewater , Water Purification , Filtration , Membranes, Artificial , Organic Chemicals , Water Pollutants, Chemical
15.
Environ Technol ; 37(2): 172-82, 2016.
Article in English | MEDLINE | ID: mdl-26102217

ABSTRACT

The photodegradation of the herbicide fenuron (1,1-dimethyl-3-phenylurea) by using a natural iron oxide (NIO), α-Fe2O3, in aqueous solution at acidic pH has been undertaken. The NIO was characterized by the Raman spectroscopy method. The degradation pathways and the formation of degradation products were studied. A high-pressure mercury lamp and sunlight were employed as light source. Fenuron photodegradation using NIO with oxalic acid followed the pseudo-first-order kinetics, the optimal experimental conditions were [oxalic acid]0 = 10(-3) M and [NIO] = 0.1 g L(-1) at pH 3. A UVA/NIO/oxalic acid system led to a low fenuron half-life (60 min). The results were even better when solar light is used (30 min). The variables studied were the doses of iron oxide, of carboxylic acids, the solution pH and the effect of sunlight irradiation. The effects of four carboxylic acids, oxalic, citric, tartaric and malic acids, on the fenuron photodegradation with NIO have been investigated, oxalic acid was the most effective carboxylic acid used at pH 3. A similar trend was observed for the removal of total organic carbon (TOC), 75% of TOC was removed. The analytical study showed many aromatic intermediates, short-chain carboxylic acids and inorganic ion.


Subject(s)
Carboxylic Acids/chemistry , Ferric Compounds/chemistry , Herbicides/radiation effects , Phenylurea Compounds/radiation effects , Photolysis , Waste Disposal, Fluid/methods , Half-Life , Herbicides/chemistry , Oxidation-Reduction , Phenylurea Compounds/chemistry , Sunlight
16.
Chemosphere ; 109: 173-9, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24613444

ABSTRACT

This study reports on the first assessment of the treatment of sediments contaminated by organotin compounds using heterogeneous photocatalysis. Photocatalysis of organotins in water was carried out under realistic concentration conditions (µgL(-1)). Degradation compounds were analyzed by GC-ICP-MS; a quasi-complete degradation of tributyltin (TBT) in water (99.8%) was achieved after 30min of photocatalytic treatment. The degradation by photolysis was about (10%) in the same conditions. For the first time decontamination of highly polluted marine sediments (certified reference material and harbor sediments) by photocatalysis proves that the use of UV and the production of hydroxyl radicals are an efficient way to treat organotins adsorbed onto marine sediment despite the complexity of the matrix. In sediment, TBT degradation yield ranged from 32% to 37% after only 2h of irradiation (TiO2-UV) and the by-products: dibutyltin (DBT) and monobutyltin (MBT) were degraded very rapidly in comparison with TBT. It was shown that during photocatalysis of organotins in sediments, the hydroxyl radical attack and photolysis are the two ways for the degradation of adsorbed TBT.


Subject(s)
Geologic Sediments/chemistry , Organotin Compounds/chemistry , Trialkyltin Compounds/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Catalysis , Environmental Restoration and Remediation , Gas Chromatography-Mass Spectrometry , Photolysis , Time Factors , Titanium/chemistry , Ultraviolet Rays , Water Pollutants, Chemical/analysis
17.
Environ Technol ; 32(5-6): 507-14, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21877531

ABSTRACT

The feasibility of coupling photocatalysis with biological treatment to treat effluents containing azo dyes was examined in this work. With this aim, the degradation of Acid Red 183 was investigated. The very low biodegradability of AR183 was confirmed beforehand by measuring the biological oxygen demand (BOD5). Photocatalysis experiments were carried out in a closed-loop step photoreactor. The reactor walls were covered by TiO2 catalyst coated on non-woven paper, and the effluent flowed over the photocatalyst as a thin falling film. The removal of the dye was 82.7% after 4 h, and a quasi-complete decolorization (98.5%) was obtained for 10 h of irradiation (initial concentration 100 mg L(-1)). The decrease in concentration followed pseudo-first-order kinetics, with a constant k of 0.47 h(-1). Mineralization and oxidation yields were 80% and 75%, respectively, after 10 h of pretreatment. Therefore, even if target compound oxidation occurs (COD removal), indicating a modification to the chemical structure, the concomitant high mineralization was not in favour of subsequent microbial growth. The BOD5 measurement confirmed the non-biodegradability of the irradiated solution, which remained toxic since the EC50 decreased from 35 to 3 mg L(-1). The proposed integrated process appeared, therefore, to be not relevant for the treatment of AR183. However, this result should be confirmed for other azo dyes.


Subject(s)
Azo Compounds/chemistry , Coloring Agents/chemistry , Photochemistry/methods , Titanium/chemistry , Water Pollutants, Chemical/chemistry , Azo Compounds/toxicity , Biological Oxygen Demand Analysis , Catalysis , Chlorides/analysis , Coloring Agents/toxicity , Nitrates/analysis , Quaternary Ammonium Compounds/analysis , Spectrophotometry, Ultraviolet , Sulfates/analysis , Water Pollutants, Chemical/toxicity
18.
Chemosphere ; 77(8): 1035-42, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19836051

ABSTRACT

Previous studies have established that odorous and stable chloraldimines are formed during amino acid chlorination in drinking water treatment. In order to identify at low level (10(-8) M) the presence of these odorous disinfection by-products in drinking water matrixes an analytical method was developed by using head space apparatus (HS) combined with a sorbent trap system linked to a GC with a mass spectrometer detector (HS/Trap/GC/MS). The analyses were carried out in three different drinking water supplies from the Paris area, during the four seasons. Free amino acids were monitored at the inlet of the plant. The odorous disinfection by-products were analyzed at the outlet of each drinking water treatment plant and the different distribution networks were connected to the corresponding plant. The results confirmed that the odorous chloraldimines are produced during chlorination of free amino acids in three different matrixes in different seasons throughout the year (N-chloroisobutaldimine; N-chloromethyl-2-butaldimine; N-chloromethyl-3-butaldimine (6-10 nM). The analytical method (HS/Trap/GC/MS) used to monitor odorous disinfection by-products appeared to be adapted for the detection of these by-products at nM level.


Subject(s)
Amino Acids/chemistry , Disinfectants/analysis , Drinking , Halogenation , Odorants , Water Purification , Water/chemistry , Calibration , Disinfectants/chemistry , Gas Chromatography-Mass Spectrometry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry
19.
J Hazard Mater ; 150(2): 250-6, 2008 Jan 31.
Article in English | MEDLINE | ID: mdl-17543449

ABSTRACT

Reactive black 5 (RB5), an azo dye, was degraded by using UV-irradiated TiO(2) coated on non woven paper with SiO(2) as a binder. The adsorption capacity of the photocatalyst was studied at natural pH, superior to pH(pzc) of the binder, for various ionic strengths. Different salts such as NaCl, KCl, CaCl(2), LiCl, Ca(NO(3))(2) were used to increase the ionic strength. The presence of salt increased the adsorption capacity. The electrostatic interactions between dye and oxide surface charges (TiO(2)/SiO(2)) is very important in the adsorption phenomena. The effect of the ionic strength of the solution on photocatalyst degradation was studied. The rate of degradation was increased by the presence of salts in the range of the experimental conditions. The increase of the initial decolorization rate was observed in the following order: Ca(2+)>K(+)>Na(+)>Li(+). Experiments with different anions (Cl(-), NO(3)(-)) had shown that nitrate was an indifferent electrolyte for the adsorption and photodegradation of the dye on SiO(2)/TiO(2).


Subject(s)
Naphthalenesulfonates/chemistry , Photochemistry/methods , Water Purification/methods , Adsorption , Catalysis , Hydrogen-Ion Concentration , Osmolar Concentration , Paper , Silicon Dioxide/chemistry , Textile Industry , Titanium/chemistry
20.
Water Res ; 40(16): 3003-3014, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16905174

ABSTRACT

The chlorination reactions of glyphosate and glycine in water were thoroughly studied. Utilizing isotopically enriched (13C and 15N) samples of glycine and glyphosate and 1H, 13C, 31P, and 15N NMR spectroscopy we were able to identify all significant terminal chlorination products of glycine and glyphosate, and show that glyphosate degradation closely parallels that of glycine. We have determined that the C1 carboxylic acid carbon of glycine/glyphosate is quantitatively converted to CO2 upon chlorination. The C2 methylene carbon of glycine/glyphosate is converted to CO2 and methanediol. The relative abundance of these two products is a function of the pH of the chlorination reactions. Under near neutral to basic reaction conditions (pH 6-9), CO2 is the predominant product, whereas, under acidic reaction conditions (pH < 6) the formation of methanediol is favored. The C3 phosphonomethylene carbon of glyphosate is quantitatively converted to methanediol under all conditions tested. The nitrogen atom of glycine/glyphosate is transformed into nitrogen gas and nitrate, and the phosphorus moiety of glyphosate produces phosphoric acid upon chlorination. In addition to these terminal chlorination products, a number of labile intermediates were also identified including N-chloromethanimine, N-chloroaminomethanol, and cyanogen chloride. The chlorination products identified in this study are not unique to glyphosate and are similar to those expected from chlorination of amino acids, proteins, peptides, and many other natural organic matters present in drinking water.


Subject(s)
Chlorine/chemistry , Glycine/analogs & derivatives , Glycine/chemistry , Water Purification , Water , Carbon Dioxide/metabolism , Carbon Isotopes , Carbon Radioisotopes , Chlorine/metabolism , Glycine/metabolism , Magnetic Resonance Spectroscopy , Methane/metabolism , Nitrogen Isotopes , Water Purification/methods , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL
...