Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
2.
Neuron ; 110(13): 2124-2138.e8, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35525243

ABSTRACT

Flexible mapping between activity in sensory systems and movement parameters is a hallmark of motor control. This flexibility depends on the continuous comparison of short-term postural dynamics and the longer-term goals of an animal, thereby necessitating neural mechanisms that can operate across multiple timescales. To understand how such body-brain interactions emerge across timescales to control movement, we performed whole-cell patch recordings from visual neurons involved in course control in Drosophila. We show that the activity of leg mechanosensory cells, propagating via specific ascending neurons, is critical for stride-by-stride steering adjustments driven by the visual circuit, and, at longer timescales, it provides information about the moving body's state to flexibly recruit the visual circuit for course control. Thus, our findings demonstrate the presence of an elegant stride-based mechanism operating at multiple timescales for context-dependent course control. We propose that this mechanism functions as a general basis for the adaptive control of locomotion.


Subject(s)
Drosophila , Walking , Animals , Locomotion/physiology , Neurons/physiology , Patch-Clamp Techniques , Walking/physiology
3.
Curr Biol ; 30(19): 3736-3748.e5, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32795437

ABSTRACT

Communication between male and female fruit flies during courtship is essential for successful mating, but, as with many other species, it is the female who decides whether to mate. Here, we show a novel role for ovipositor extrusion in promoting male copulation attempts in virgin and mated females and signaling acceptance in virgins. We first show that ovipositor extrusion is only displayed by sexually mature females, exclusively during courtship and in response to the male song. We identified a pair of descending neurons that controls ovipositor extrusion in mated females. Genetic silencing of the descending neurons shows that ovipositor extrusion stimulates the male to attempt copulation. A detailed behavioral analysis revealed that during courtship, the male repeatedly licks the female genitalia, independently of ovipositor extrusion, and that licking an extruded ovipositor prompts a copulation attempt. However, if the ovipositor is not subsequently retracted, copulation is prevented, as it happens with mated females. In this study, we reveal a dual function of the ovipositor: while its extrusion is necessary for initiating copulation by the male, its retraction signals female acceptance. We thus uncover the significance of the communication between male and female that initiates the transition from courtship to copulation.


Subject(s)
Drosophila melanogaster/anatomy & histology , Oviposition/physiology , Sexual Behavior, Animal/physiology , Animals , Copulation/physiology , Courtship , Female , Genitalia, Female/physiology , Male
SELECTION OF CITATIONS
SEARCH DETAIL