Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 26(10): 8356-8365, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38391270

ABSTRACT

In addition to providing a sustainable route to green alternative energy and chemical supplies from a cheap and abundant carbon source, recycling CO2 offers an excellent way to reduce net anthropogenic global CO2 emissions. This can be achieved via catalysis on 2D materials. These materials are atomically thin and have unique electrical and catalytic properties compared to bigger nanoparticles and conventional bulk catalysts, opening a new arena in catalysis. This paper examines the efficacy of hexagonal boron nitride (h-BN) lattices with vacancy defects for CO2 electroreduction (CO2RR). We conducted in-depth investigations on different CO2RR electrocatalytic reaction pathways on various h-BN vacancy sites using a computational hydrogen model (CHE). It was shown that CO binds to h-BN vacancies sufficiently to ensure additional electron transfer processes, leading to higher-order reduction products. For mono-atomic defects VN (removed nitrogen), the electrochemical path of (H+ + e-) pair transfers that would lead to the formation of methanol is most favorable with a limiting potential of 1.21 V. In contrast, the reaction pathways via VB (removed boron) imposes much higher thermodynamic barriers for the formation of all relevant species. With a divacancy VBN, the hydrogen evolution reaction (HER) would be the most probable process due to the low rate-determining barrier of 0.69 eV. On the tetravacancy defects VB3N the pathways toward the formation of both CH4 and CH3OH impose a limiting potential of 0.85 V. At the same time, the HER is suppressed by requiring much higher energy (2.15 eV). Modeling the edges of h-BN reveals that N-terminated zigzag conformation would impose the same limiting potential for the formation of methanol and methane (1.73 V), simultaneously suppressing the HER (3.47 V). At variance, the armchair conformation favors the HER, with a rate-determining barrier of 1.70 eV. Hence, according to our calculations, VB3N and VN are the most appropriate vacancy defects for catalyzing CO2 electroreduction reactions.

2.
J Phys Chem A ; 127(46): 9695-9704, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37939355

ABSTRACT

The predictive ability of density functional theory is fundamental to its usefulness in chemical applications. Recent work has compared solution-phase enthalpies of activation for metal-ligand bond dissociation to enthalpies of reaction for bond dissociation, and the present work continues those comparisons for 43 density functional methods. The results for ligand dissociation enthalpies of 30 metal-ligand complexes tested in this work reveal significant inadequacies of some functionals as well as challenges from the dispersion corrections to some functionals. The analysis presented here demonstrates the excellent performance of a recent density functional, M11plus, which contains nonlocal rung-3.5 correlation. We also find a good agreement between theory and experiment for some functionals without empirical dispersion corrections such as M06, r2SCAN, M06-L, and revM11, as well as good performance for some functionals with added dispersion corrections such as ωB97X-D (which always has a correction) and BLYP, B3LYP, CAM-B3LYP, and PBE0 when the optional dispersion corrections are added.

3.
Phys Chem Chem Phys ; 25(16): 11630-11652, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37042733

ABSTRACT

Recycling CO2 back to fuels offers an ideal solution to control anthropogenic global CO2 emissions as well as providing a sustainable green solution to alternative energy resources from a cheap and earth-abundant carbon source. Size-selected nanoclusters open a novel area in catalysis as these atomically precise nanoclusters possess unique electronic and catalytic properties different from larger nanoparticles and traditional bulk catalysts. In this work, we have investigated the ability of first-row transition metal nanoclusters (Sc-Cu) of varying sizes (3 to 10 atoms) for CO2 electroreduction (CO2RR). Employing computational hydrogen model (CHE), we have performed detailed analyzes on various CO2RR electrocatalytic reaction pathways on all nanocluster surfaces. We have identified a general trend of decreasing adsorption energies while moving across the periodic table from Sc to Cu. Moreover, we have found a general preference for CHO* mediated pathways over COH* mediated pathways for methane formation. The CHO* mediated pathways prefer the reaction route via CHO* → CH2O* → CH2OH* → CH2* → CH3* → CH4 + * on most of the nanocluster surfaces. In addition, we have established that methanol formation is greatly disfavored on all nanocluster surfaces, and the release of CO and HCOOH is greatly suppressed on all nanoclusters. We have identified several nanoclusters as potential nanocluster-based electrocatalysts for CO2RR for methane formation with relatively lower limiting potential values below 0.50 V. CO2 electroreduction versus hydrogen evolution reaction (HER) competition was also evaluated on various nanoclusters, and we identified a number of nanoclusters (Ti6, V5, V6, Mn4, Mn7, Mn10, Fe4, Fe8, Fe10, Ni4, and Cu5) that can suppress the formation of HER over CO2RR. We have also established a linear scaling relationship between the adsorption free energies of various CO2RR adsorbates to the adsorption free energies of CO2*, O*, and C* adsorbates. We have found that scaling free energy relationships that exit on heterogeneous catalysts such as the correlation between the adsorption energies of AHx with the adsorption energies of atom A (A = C, N, O, S, etc.) often breaks on nanocluster surfaces, especially for adsorbates with more than one binding motifs.

4.
Inorg Chem ; 62(13): 5058-5066, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36946599

ABSTRACT

We present results for a series of complexes derived from a titanium complex capable of activating C-H bonds under mild conditions (PNP)Ti═CHtBu(CH2tBu), where PNP = N[2-PiPr2-4-methylphenyl]2-. In addition to the initial activation of methane, a tautomerization reaction to a terminal methylidene is also explored due to methylidene's potential use as a synthetic starting point. Analogous complexes with other low-cost 3d transition metals were studied, such as scandium, titanium, vanadium, and chromium as both isoelectronic and isocharged complexes. Our results predict that V(IV) and V(V) complexes are promising for methane C-H bond activation. The V(V) complex has a low rate-determining barrier for methane activation, specifically 16.6 kcal/mol, which is approximately 12 kcal/mol less than that for the Ti complex, as well as having a moderate tautomerization barrier of 29.8 kcal/mol, while the V(IV) complex has a methane activation barrier of 19.0 kcal/mol and a tautomerization barrier of 31.1 kcal/mol. Scandium and chromium complexes are much poorer for C-H bond activation; scandium has very high barriers, while chromium strongly overstabilizes the alkylidene intermediate, potentially stopping the further reaction. In addition to the original PNP ligand, some of the most promising ligands from a previous work were tested, although (as shown previously) modification of the ligand does not typically have large effects on the activity of the system. Our best ligand modification improves the performance of the V(V) complex via the substitution of the nitrogen in PNP by phosphorus, which reduces the tautomerization barrier by 5 to 24.4 kcal/mol.

5.
ACS Appl Mater Interfaces ; 13(34): 41094-41101, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34410686

ABSTRACT

Novel methods to synthesize electron-deficient π-conjugated polymers utilizing transition-metal-free coupling reactions for the use of nonfunctionalized monomers are attractive due to their improved atom economy and environmental prospective. Herein we describe the use of iPrMgCl·LiCl complex to afford thiazole-based conjugated polymers in the absence of any transition metal catalyst, that enables access to well-defined polymers with good molecular weights. The mechanistically distinct polymerizations proceeded via nucleophilic aromatic substitution (SNAr) reaction supported by density functional theory (DFT) calculations. This work demonstrates the first example of fully conjugated thiazole-based aromatic homopolymers without the need of any transition metal catalyst.

6.
Angew Chem Int Ed Engl ; 60(18): 10103-10111, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33620755

ABSTRACT

We present a novel synthesis strategy termed delayed linker addition (DLA) to synthesize hybrid zeolitic-imidazolate frameworks containing unsubstituted imidazolate linkers (Im) with SOD topology (hereafter termed Im/ZIF-8). Im linker incorporation can create larger voids and apertures, which are important properties for gas storage and separation. To date, there have been only a handful of reports of Im linkers incorporated into ZIF-8 frameworks, typically requiring arduous and complicated post synthesis approaches. DLA, as reported here, is a simple one-step synthesis strategy allowing high incorporation of Im linker into the ZIF-8 framework while still retaining its SOD topology. We fabricated mixed-matrix membranes (MMMs) with 6FDA-DAM polymer and Im/ZIF-8 obtained via DLA as a filler. The Im/ZIF-8-containing MMMs showed excellent performance for both propylene/propane and n-butane/i-butane separation, displaying permeability and ideal selectivity well above the polymer upper bound. Moreover, highly detailed molecular simulations shed light to the aperture size and flexibility response of Im/ZIF-8 and its improved diffusivity as compared to ZIF-8.

7.
J Org Chem ; 86(5): 3882-3889, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33615796

ABSTRACT

The present study of the chemistry of short-lived α-fluorocarbocations reveals that even inactive methyl carbons can serve as nucleophiles, attacking a cationic center. This, in turn, facilitates the synthesis of a cyclopropane ring in certain triterpene backbones. We report the synthesis of compounds similar to 2, containing a bridgehead cyclopropane, and compounds of type 3 with an 11 membered bicyclic ring consisting of two bridgehead double bonds (anti-Bredt) within a triterpene skeleton. The synthesis involves three unconventional chemical processes: (a) a methyl group serving as a nucleophile; (b) the unexpected and unprecedented synthesis of a strained system in the absence of an external neighboring trigger; and (c) the formation of an 11-membered bicyclic diene ring within a triterpenoid skeleton. An α-fluorocarbocation mechanism is proposed and supported by density functional theory calculations.

8.
J Mol Model ; 26(8): 205, 2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32651713

ABSTRACT

Considering that olefins present a large volume feedstock, it is reasonable to expect that their purification is industrially critical. After the discovery of the nickel bis (dithiolene) complex Ni(S2C2(CF3)2)2 that exhibits electro-catalytic activity with olefins but tends to decompose by a competitive reaction route, related complexes have been explored experimentally and theoretically. In this paper, a computational examination is performed on differently charged cobalt and copper bis (oxothiolene) complexes [M (OSC2(CN)2)2] to test their potential applicability as the catalysts for olefin purification, using the simplest olefin, ethylene. Possible reaction pathways for ethylene addition on these complexes were explored, to determine whether some of these candidates can avoid the reaction route that leads to decomposition, which is distinctive from the nickel complex, and to form stable adducts that can subsequently release ethylene by reduction. Our calculations suggest that the neutral cobalt complex might be an alternative catalyst, because all its forms can bind ethylene to produce stable interligand adducts with moderate to low activation barriers, rather than to form intraligand adducts that lead to decomposition. The calculations also predict that these interligand adducts are capable of releasing ethylene upon reduction. In addition, it can produce the desired interligand adducts following two different reaction pathways, assigned as the direct and the indirect, with no need for anion species as co-catalysts, which is crucial for the nickel complex. Thus, the olefin purification process could be much simpler by using this catalyst.

9.
ACS Cent Sci ; 6(3): 420-425, 2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32232142

ABSTRACT

High-level ab initio calculations show that the most stable stacking for benzene-cyclohexane is 17% stronger than that for benzene-benzene. However, as these systems are displaced horizontally the benzene-benzene attraction retains its strength. At a displacement of 5.0 Å, the benzene-benzene attraction is still ∼70% of its maximum strength, while benzene-cyclohexane attraction has fallen to ∼40% of its maximum strength. Alternatively, the radius of attraction (>2.0 kcal/mol) for benzene-benzene is 250% larger than that for benzene-cyclohexane. Thus, at relatively large distances aromatic rings can recognize each other, a phenomenon that helps explain their importance in protein folding and supramolecular structures.

10.
ACS Appl Mater Interfaces ; 12(18): 20536-20547, 2020 May 06.
Article in English | MEDLINE | ID: mdl-32281364

ABSTRACT

Zeolitic-imidazolate frameworks (ZIFs) are candidate materials for the next generation of membranes for cheaper, "greener" separations. More than a decade after ZIF introduction, the high propylene/propane selectivity of ZIF-8 and ZIF-67 is the only example of ZIF membranes with remarkable selectivity efficiency despite their numerous advantages over other families of materials. Herein, we demonstrate the effectiveness of molecular-scale modification in the design of new ZIF materials useful for the separation of important and highly challenging mixtures such as He/CH4, H2/CH4, O2/N2, CO2/CH4, and CO2/N2. Via computational methods, metal and linker substitutions are employed to produce new ZIF-8 variants with a finely discretized range of aperture sizes, as these govern the kinetic-based selectivity of the material. The permeability and selectivity through the ZIF-8 variants of the gases under study are estimated, and their performance is compared with an extensive number of polymeric, metal-organic framework, covalent-organic framework, and mixed-matrix membranes. The comparison shows that some of the ZIF-8 analogues can be used as membranes of unprecedented high separation performance. The scope of this work is to highlight the effectiveness of the molecular level design as means of membrane development to address the global need for cheaper separation methods and CO2 emission reduction.

11.
ACS Appl Mater Interfaces ; 11(37): 34376-34384, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31490644

ABSTRACT

Carbon monoxide (CO) is an important biological gasotransmitter in living cells. Precise spatial and temporal control over release of CO is a major requirement for clinical application. To date, the most reported carbon monoxide releasing materials use expensive fabrication methods and require harmful and poorly designed tissue-penetrating UV irradiation to initiate the CO release precisely at infected sites. Herein, we report the first example of utilizing a green light-responsive CO-releasing polymer P synthesized via ring-opening metathesis polymerization. Both monomer M and polymer P were very stable under dark conditions and CO release was effectively triggered using minimal power and low energy wavelength irradiation (550 nm, ≤28 mW). Time-dependent density functional theory (TD-DFT) calculations were carried out to simulate the electronic transition and insight into the nature of the excitations for both L and M. TD-DFT calculations indicate that the absorption peak of M is mainly due to the excitation of the seventh singlet excited state, S7. Furthermore, stretchable materials using polytetrafluoroethylene (PTFE) strips based on P were fabricated to afford P-PTFE, which can be used as a simple, inexpensive, and portable CO storage bandage. Insignificant cytotoxicity as well as cell permeability was found for M and P against human embryonic kidney cells.

12.
J Comput Chem ; 40(19): 1752-1757, 2019 07 15.
Article in English | MEDLINE | ID: mdl-30901501

ABSTRACT

Promoter atoms can tune a catalyst's activity and selectivity by transferring charge to and from the active site. Rational design of promoted catalysts, using density functional theory calculations, is today limited by the need to simulate many catalyst and promoter configurations. We present a simple approximation that rapidly captures some trends in promoter effects, at a cost of complexity comparable with simulating unpromoted catalysts. Negative (positive) noninteger point charges introduced into the catalyst simulate how electropositive (electronegative) promoters might affect each predicted intermediate. Calculations return Sabatier plots, relating promoters' predicted efficacy to readily measured properties such as catalyst work functions. We illustrate our approach for two reactions associated with the Fischer-Tropsch process, hydrogen-deuterium scrambling, and carbon monoxide dissociation over ruthenium. Consistent with experiment, electropositive promoters are predicted to accelerate hydrogen scrambling and unassisted CO dissociation. Simulations also provide a new prediction: electronegative promoters accelerate hydrogen-assisted CO dissociation over hydrogen-precovered surfaces by stabilizing the initial CO adsorption. © 2019 Wiley Periodicals, Inc.

13.
Phys Chem Chem Phys ; 21(3): 1198-1206, 2019 Jan 21.
Article in English | MEDLINE | ID: mdl-30566142

ABSTRACT

Chelate-aryl and chelate-chelate stacking interactions of nickel bis(dithiolene) were studied at the CCSD(T)/CBS and DFT levels. The strongest chelate-aryl stacking interaction between nickel bis(dithiolene) and benzene has a CCSD(T)/CBS stacking energy of -5.60 kcal mol-1. The strongest chelate-chelate stacking interactions between two nickel bis(dithiolenes) has a CCSD(T)/CBS stacking energy of -10.34 kcal mol-1. The most stable chelate-aryl stacking has the benzene center above the nickel atom, while the most stable chelate-chelate dithiolene stacking has the chelate center above the nickel atom. Comparison of chelate-aryl stacking interactions of dithiolene and acac-type nickel chelate shows similar strength. However, chelate-chelate stacking is stronger for dithiolene nickel chelate than for acac-type nickel chelate, which has a CCSD(T)/CBS interaction energy of -9.50 kcal mol-1.

14.
ACS Appl Mater Interfaces ; 10(46): 39631-39644, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30354063

ABSTRACT

A recently reported modification of the zeolitic-imidazolate framework-8 (ZIF-8) with partial replacement of the 2-methylimidazolate (mIm) linker with benzimidazolate (bIm), namely ZIF-7-8, is investigated with molecular simulations using a first-time reported force field. The size of the ZIF-7-8 aperture, which governs the gas-separation efficiency of this material and which has not been estimated before for this modification, is smaller than that of the original ZIF-8. The diffusivities of CO2, N2, and CH4 estimated through transition state theory calculations result in remarkably high diffusion selectivities for CO2/CH4 and CO2/N2 mixtures. This performance enhancement is investigated in terms of structural flexibility in the form of the aperture motion through extensive estimation of the effective diameter, the total effective area, and the motion of the aperture linkers, of both ZIF-8 and ZIF-7-8. Both apertures exhibit an oscillation through the rotation of the linkers, which are adjusted according to the size of the penetrant molecules the moment they pass through it. Finally, a subsequent analysis reveals that there is strong dependency of the separation performance on the bIm-to-mIm ratio: below 33% bIm incorporation, the appearance of ZIF-8-alike wide apertures decreases dramatically the size-based selectivity of the mixtures in ZIF-7-8.

15.
J Chem Phys ; 148(24): 244106, 2018 Jun 28.
Article in English | MEDLINE | ID: mdl-29960315

ABSTRACT

The conventional wisdom in density functional theory (DFT) is that standard approximations systematically underestimate chemical reaction barrier heights and that exact (Hartree-Fock-like, HF) exchange admixture improves this. This conventional wisdom is inconsistent with the good performance of functionals without HF exchange for many reactions on metal catalyst surfaces. We have studied several "anomalous" gas-phase reactions where this conventional wisdom is upended, and a HF exchange admixture decreases or does not affect the predicted barrier heights [Mahler et al., J. Chem. Phys. 146, 234103 (2017)]. Here we show how natural bond orbital analyses can help identify and explain some factors that produce anomalous barriers. Applications to pnictogen inversion, standard benchmark reaction barrier datasets, and a model Grubbs catalyst illustrate the utility of this approach. This approach is expected to aid DFT users in choosing appropriate functionals, and aid DFT developers in devising DFT approximations generally applicable to catalysis.

16.
J Am Chem Soc ; 140(11): 3929-3939, 2018 03 21.
Article in English | MEDLINE | ID: mdl-29444572

ABSTRACT

Mechanistic details of the aerobic oxidative coupling of methyl groups by a novel (MeL)PdII(Me)2 complex with the tetradentate ligand, MeL = N, N-dimethyl-2,11-diaza[3.3](2,6)pyridinophane, has been explored by density functional theory calculations. The calculated mechanism sheds light on the role of this ligand's flexibility in several stages of the reaction, especially as the oxidation state of the Pd changes. Ligand flexibility leads to diverse axial coordination modes, and it controls the availability of electrons by modulating the energies of high-lying molecular orbitals, particularly those with major d z2 character. Solvent molecules, particularly water, appear essential in the aerobic oxidation of PdII by lowering the energy of the oxygen molecule's unoccupied molecular orbital and stabilizing the PdX-O2 complex. Ligand flexibility and solvent coordination to oxygen are essential to the required spin-crossover for the transformation of high-valent PdX-O2 complexes. A methyl cation pathway has been predicted by our calculations in transmetalation between PdII and PdIV intermediates to be preferred over methyl radical or methyl anion pathways. Combining an axial and equatorial methyl group is preferred in the reductive elimination pathway where roles are played by the ligand's flexibility and the fluxionality of trimethyl groups.

17.
Phys Chem Chem Phys ; 20(7): 4879-4892, 2018 Feb 14.
Article in English | MEDLINE | ID: mdl-29384175

ABSTRACT

The influence of a zeolitic imidazolate framework (ZIF)'s metal identity on its gas separation performance is studied extensively through molecular simulations for a variety of gases. ZIF-8 is used as the original framework for alterations of different metal substitutes of the Zn2+ metal. ZIF-8 consists of cages connected by narrow apertures that exhibit flexibility through "swelling", allowing for relatively large penetrants to diffuse. Replacing the central metal atom in the basic tetrahedral unit of ZIF-8 with Cd, Co or Be results in three different structures with increasing bonding stiffness with their neighboring atoms. The metal modification approach offers a way to control the flexibility and the size of the aperture, which constitutes the main energy barrier of the penetrant's hop-like diffusion between the framework's cages. Newly developed force fields are reported and utilized here; the new frameworks are compared to the original one, in terms of the diffusivity of various gas molecules as a function of their size (from He to n-butane). The correlation of the gas diffusivity with the aperture flexibility-molecular size relation is investigated. The results reveal that the aperture flexibility-molecular size relation governs the diffusivity, which shapes a common trend along all modifications. Furthermore, a new generalized method is employed for the screening of the various modifications for specific gas separations. This method is useful to detect optimum separation performance for the various modifications: CdIF-1 (Cd) for n-butane/iso-butane mixture; ZIF-67 (Co) for propylene/n-propane and ethylene/ethane mixtures; BeIF-1 (Be) for CO2/C2H6, CO2/CH4 and CO2/N2 mixtures.

18.
J Am Chem Soc ; 140(5): 1842-1854, 2018 02 07.
Article in English | MEDLINE | ID: mdl-29290110

ABSTRACT

Carbon-hydrogen bond activation of alkanes by Tp'Rh(CNR) (Tp' = Tp = trispyrazolylborate or Tp* = tris(3,5-dimethylpyrazolyl)borate) were followed by time-resolved infrared spectroscopy (TRIR) in the υ(CNR) and υ(B-H) spectral regions on Tp*Rh(CNCH2CMe3), and their reaction mechanisms were modeled by density functional theory (DFT) on TpRh(CNMe). The major intermediate species were: κ3-η1-alkane complex (1); κ2-η2-alkane complex (2); and κ3-alkyl hydride (3). Calculations predict that the barrier between 1 and 2 arises from a triplet-singlet crossing and intermediate 2 proceeds over the rate-determining C-H activation barrier to give the final product 3. The activation lifetimes measured for the Tp*Rh(CNR) and Tp*Rh(CO) fragments with n-heptane and four cycloalkanes (C5H10, C6H12, C7H14, and C8H16) increase with alkanes size and show a dramatic increase between C6H12 and C7H14. A similar step-like behavior was observed previously with CpRh(CO) and Cp*Rh(CO) fragments and is attributed to the wider difference in C-H bonds that appear at C7H14. However, Tp'Rh(CNR) and Tp'Rh(CO) fragments have much longer absolute lifetimes compared to those of CpRh(CO) and Cp*Rh(CO) fragments, because the reduced electron density in dechelated κ2-η2-alkane Tp' complexes stabilizes the d8 Rh(I) in a square-planar geometry and weakens the metal's ability for oxidative addition of the C-H bond. Further, the Tp'Rh(CNR) fragment has significantly slower rates of C-H activation in comparison to the Tp'Rh(CO) fragment for the larger cycloalkanes, because the steric bulk of the neopentyl isocyanide ligand hinders the rechelation in κ2-Tp'Rh(CNR)(cycloalkane) species and results in the C-H activation without the assistance of the rechelation.

19.
J Comput Chem ; 39(18): 1158-1167, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29271503

ABSTRACT

We present a computational study of the mechanism of the formation of 6-member heterocycles through the binding of ethylene to oxaldehyde, ethanedithial, and 2-thioxoacetaldehyde. This process is related to the olefin separation technology by metal dithiolenes and dioxolenes, being the formation of those heterocycles the main decomposition route. We also present a benchmark of 26 density functionals (spanning hybrid, double-hybrid, range-separated, semilocal, and local functionals) related to CCSD(T)/CBS reference values. Both the cyclization reaction and the isomerization of the cyclic product are included in the benchmark. The best functional among those tested for these reactions is ωB97XD, and the effect of the basis set is also investigated for it. © 2017 Wiley Periodicals, Inc.

20.
Inorg Chem ; 56(18): 11244-11253, 2017 Sep 18.
Article in English | MEDLINE | ID: mdl-28872840

ABSTRACT

The photochemistry of two Mn(bpy)(CO)3X complexes (X = PhCC-, Br-) has been studied in the coordinating solvents THF (terahydrofuran) and MeCN (acetonitrile) employing time-resolved infrared spectroscopy. The two complexes are found to exhibit strikingly different photoreactivities and solvent dependencies. In MeCN, photolysis of 1-(CO)(Br) [1 = Mn(bpy)(CO)2] affords the ionic complex [1-(MeCN)2]Br as a final product. In contrast, photolysis of 1-(CO)(CCPh) in MeCN results in facial to meridional isomerization of the parent complex. When THF is used as solvent, photolysis results in facial to meridional isomerization in both complexes, though the isomerization rate is larger for X = Br-. Pronounced differences are also observed in the photosubstitution chemistry of the two complexes where both the rate of MeCN exchange from 1-(MeCN)(X) by THFA (tetrahydrofurfurylamine) and the nature of the intermediates generated in the reaction are dependent upon X. DFT calculations are used to support analysis of some of the experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...