Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 122(48): 9359-9369, 2018 Dec 06.
Article in English | MEDLINE | ID: mdl-30403866

ABSTRACT

In recent years, NMR with hyperpolarized (HP) xenon inside functionalized host structures (e.g., cryptophanes) have become a potential candidate for the direct observation of metabolic processes (i.e., molecular imaging). A critical issue for real applications is the dissolution of the HP-gas in the liquid which contains the host. In this work, we present recent developments for an improved and controlled dissolution of HP-Xe in liquids using hollow fiber membranes and different compressor systems. The designed apparatus consists of a compressor and a membrane unit. The compressor provides HP-129Xe continuously at small adjustable pressures and in a polarization-preserving way. The membrane unit enables a molecular solution of the HP-gas in aqueous liquids, avoiding the formation of bubbles or even foams. Two different types of compressors were tested in terms of function and useful materials. Special emphasis was put on a systematic reduction of transfer losses in the gas and liquid phase. In order to optimize the system parameters, several physical models were developed to describe the transport and the losses of nuclear polarization. Finally, the successful implementation was demonstrated in several experiments. HP-Xe was dissolved in an aqueous cryptophane-A-(OCH2COOH)6 solution, and stable Xe signals could be measured over 35 min, only limited by the size of the gas reservoir. Such long and stable experimental conditions enabled the study of chemical exchange of xenon between cryptophane and water environments even for a time-consuming 2D NMR experiment. The good signal stability over the measurement time allowed an exact determination of the residence time of the Xe atom inside the cryptophane, resulting in an average residence time of 44.5 ± 2.7 ms.

2.
Chirality ; 30(4): 342-350, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29315870

ABSTRACT

The two enantiomers of 2,2'-bioxirane were synthesized, and their chiroptical properties were thoroughly investigated in various solvents by polarimetry, vibrational circular dichroism (VCD), and Raman optical activity (ROA). Density functional theory (DFT) calculations at the B3LYP/aug-cc-pVTZ level revealed the presence of three conformers (G+ , G- , and cis) with Gibbs populations of 51, 44, and 5% for the isolated molecule, respectively. The population ratios of the two main conformers were modified for solvents exhibiting higher dielectric constants (G- form decreases whereas G+ form increases). The behavior of the specific optical rotation values with the different solvents was correctly reproduced by time-dependent DFT calculations using the polarizable continuum model (PCM), except for the benzene for which explicit solvent model should be necessary. Finally, VCD and ROA spectra were perfectly reproduced by the DFT/PCM calculations for the Boltzmann-averaged G+ and G- conformers.

3.
Chem Commun (Camb) ; 51(57): 11482-4, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26091539

ABSTRACT

Recombinant proteins bearing a tag are crucial tools for assessing protein location or function. Small tags such as Cys4 tag (tetracysteine; Cys-Cys-X-X-Cys-Cys) are less likely disrupt protein function in the living cell than green fluorescent protein. Herein we report the first example of the design and synthesis of a dual fluorescence and hyperpolarized (129)Xe NMR-based sensor of Cys4-tagged proteins. This sensor becomes fluorescent when bound to such Cys4-tagged peptides, and the (129)Xe NMR spectrum exhibits a specific signal, characteristic of the biosensor-peptide association.


Subject(s)
Cysteine/analysis , Fluoresceins/chemistry , Fluorescent Dyes/chemistry , Organometallic Compounds/chemistry , Peptides/analysis , Polycyclic Compounds/chemistry , Amino Acid Sequence , Biosensing Techniques , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Recombinant Proteins/analysis , Spectrometry, Fluorescence , Xenon Isotopes/chemistry
4.
J Phys Chem B ; 118(8): 2134-46, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24472055

ABSTRACT

Host-guest complexes between cryptophane-A as host and dichloromethane and chloroform as guests are investigated using (1)H and (13)C NMR spectroscopy. Moreover, a related cryptophane, with the methoxy groups replaced by butoxy units (cryptophane-But), and its complexes with the same guests were also studied. Variable temperature spectra showed effects of chemical exchange between the free and bound guests, as well as of conformational exchange of the host. The guest exchange was studied quantitatively by exchange spectroscopy or line shape analysis. Extraction of kinetic and thermodynamic parameters led to the characterization of the affinity between guests and hosts. On the other hand, the host exchange was investigated by means of (13)C Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion which aims at the determination of the transverse relaxation rate R2, the inverse of the transverse relaxation time T2, as a function of the repetition of the π pulses in a CPMG train. The variation of the measured transverse relaxation rate with the repetition rate νCPMG indicated conformational exchange occurring on the microsecond-millisecond time scale. Structural information was obtained through measurements of cross-relaxation rates, both within the host and between the host and the guest protons. The NMR results were supported by DFT calculations.

5.
Magn Reson Chem ; 51(1): 19-31, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23132654

ABSTRACT

Cryptophane-C is composed of two nonequivalent cyclotribenzylene caps, one of which contains methoxy group substituents on the phenyl rings. The two caps are connected by three OCH(2)CH(2)O linkers in an anti arrangement. Host-guest complexes of cryptophane-C with dichloromethane and chloroform in solution were investigated in detail by nuclear magnetic resonance techniques and density functional theory (DFT) calculations. Variable temperature proton and carbon-13 spectra show a variety of dynamic processes, such as guest exchange and host conformational transitions. The guest exchange was studied quantitatively by exchange spectroscopy measurements or by line-shape analysis. The conformational preferences of the guest-containing host were interpreted through cross-relaxation measurements, providing evidence of the gauche+2 and gauche-2 conformations of the linkers. In addition, the mobility of the chloroform guest inside the cavity was studied by carbon-13 relaxation experiments. Combining different types of evidence led to a detailed picture of molecular recognition, interpreted in terms of conformational selection.

6.
Magn Reson Chem ; 48(8): 623-9, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20589729

ABSTRACT

Guest-host complex between cryptophane C, possessing two non-equivalent caps, and chloroform is investigated by NMR spectroscopy. The kinetics of the chloroform exchange between the bound and free sites is determined by (1)H exchange spectroscopy. Moreover, the preferential orientation of chloroform molecule with respect to the cryptophane C frame is examined by the NOESY and ROESY experiments. The experimental findings are compared to the results of quantum chemical calculations.


Subject(s)
Bridged-Ring Compounds/chemistry , Chloroform/chemistry , Phenyl Ethers/chemistry , Kinetics , Magnetic Resonance Spectroscopy/standards , Models, Molecular , Molecular Structure , Quantum Theory , Reference Standards
7.
J Mass Spectrom ; 36(10): 1092-7, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11747102

ABSTRACT

The formation of cryptophane-A (C1) and the deuterated cryptophanes C2-C6 from their respective precursors P1-P6 in a mass spectrometer ion-source was evidenced by liquid secondary ion mass spectrometry (LSIMS). Mass-analyzed ion kinetic energy experiments performed on the precursor molecular ions suggested that cryptophane formation occurred mainly in the liquid-matrix before desorption rather than in the gas phase. In addition, we observed that the presence of cations, such as lithium or sodium ions, inhibited the formation of the cryptophane molecular ions. In the light of these results we used the LSIMS technique to investigate the formation of the new cryptophanes C7-C13. All the data collected support the idea that a direct comparison can be made between these experimental findings and chemistry in solution.

8.
Chemistry ; 7(7): 1561-73, 2001 Apr 01.
Article in English | MEDLINE | ID: mdl-11330913

ABSTRACT

We present the synthesis of a series of deuterated cryptophanes 2-6 by a slightly modified procedure used for cryptophane-A. We show that for [Xe@cryptophane] complexes the use of variable-temperature one-dimensional 129Xe magnetization transfer (1D-EX-SY) allows the measurement of exchange rates. From these data the decomplexation activation energy Ea has been estimated to be 37.5+/-2 kJ mol(-1). The decomplexation activation enthalpy, deltaH(++) = 35.5+/-2 kJ mol(-1), and entropy, deltaS(++) = -60+/-5 J mol(-1) K(-1), have also been calculated. The calculated negative activation entropy suggests that the activated complex associated with decomplexation is conformationally more strained than the complex in its ground state.

SELECTION OF CITATIONS
SEARCH DETAIL
...